F.E. SEM-IISTRUCTURED PROGRAMMING APPROACH

| Y 1€ > /

Kalpana Coaching Classes
Thane / Nerul / Dadar / Vileparle / Borivali

Gargi Learning Centre

Bubble cosk.: Dombivli
o (=2 WAEOREL)

F (s 320300 44D

L il (ngl>WW"’D

jam[f“] W e U :
) SEM - II T e

(7N

W o

i
Seeckien Srk Notes By

plize; 14075 '”Pr'of Vmayak Man Jr'ek@r'\

M(m“‘ WERD) =
e Our Centre

[(sl <o bed Thane - 9967504602
T Nerul - 7506379305
} ,. Dadar - 9867674602
teg o T leparle - 8097435788
%L\l = WU“"‘:&, .)
Borivali - 9821212420

awn [man] = g

) Dombivli - 9322401430

— e ————————
red by Prof. Vinayak Manjrekar 9664338174 / 02225440393 Page i

F.E. SEM-IISTRUCTURED PROGRAMMING APPROACH

Syllabus

Creating, reading, Processing File.

No. Module Details Content Hrs
1 Introduction to | 1.1 Basic Of Computer:
Computer, Turning Model, Von Neumann Model, Basic Of positional
Algorithm And | Number System, Introduction to Operating System. 6
Flowchart 1.2 Algorithm And Flowchart:
Three Construct Of Algorithm and Flowchart: Sequence,
Decision(Selection) and Repetition
2 Fundamentals 2.1 Character Set, Identifiers and Keywords, Data types,
Of C- Constants, Variables.
Programming 2.2 Operators- arithmetic, Relational and logical, Assignment,
E Unary, Conditional, Bitwise, Comma, Other operators. 6
Expression, Statements, Library Functions, Prepocessor.
2.3 Data Input Output-getchar (),Putchar(), scanf (), printf (
)gets (), puts (), Structure Of C Program.
3 Control 3.1 Branching - If Statement, If else Statement , Multiway
Structures decision. '
3.2 Looping — While, do- while, fot 12
3.3 Nested control structure- Switch statement, Continue
statement Break Statement, Goto statement.
4 Functions and 4.1 Function- Introduction of Function,Function Main, Defining 7 1
Parameter a Functien. Accessing a function, Function Prototype, passing
siguments to a Function, Recursion. ' '
4.2 Storage Classes- Auto. Extern. Static, Register 6
5 Arrays, String | 5.1 Array- Concepts, Declaration, Definition, Accessing array
Structure and elements, One-dimensional and multidimensional array.
Union 5.2 String:-Basic of string, array of String Functions in String.h
5.3 Structure- Declaration, Initialization, structure within 14
structure, Operation on structures, Array of Structure.
5.4 Union- Definition, Difference between structure and union,
operations on a union
6 Pointer and 6.1 Pointer :-Introduction, Definition and uses of Pointers,
Files Address Operator , Pointer variables , Dereferencing Pointer,
Void Pointer, Pointer Arithmetic, Pointers to Pointers, and Array,
Passing Array to Function, Pointers and Function, Pointers and g
Two dimensional Array, Array of Pointers, Dynamic Memory
Allocation.
6.2 Files:- Types of File, File operation- cpening Closing ,

N ~

otes prepared by Prof Vina

r2k Manjrekar 9664338174 / 02225440393

Page ii

i 4

-

77

dSSSELSINLSILLSISLL LIS IS

F.E. SEM-IISTRUCTURED PROGRAMMING APPROACH

STRUCTURED PROGRAMMING APPROACH

INDEX
: Introduction to Computer, Algorithm And | 4
Flowchart
2 Basics of C 2
{ 3 Expressing Algorithms - Selection T

Expressing Algorithms - Iteration

6-7 Array

Decomposition of Solution - Functions

7 Strings |
8 Structures and unions :
9 File Management in € l
10 Solution

APPENDIX |

T

y Prof. Vinayak Manjrekar 9664338174 / 02225440393

Page iii

—
-
\
-
) -
——
-
\
-
\
-
~
) —
-
\
o
\
o
\
\
—
¥
\
&
“\
-
N
\
>
—
s
\
NJ
-’
—
w
e
P
~—
—
e
T
-
\
N
S
——
w
—
v
\
v
—

#

F.E.SEM-II STRUCTURED PROGRAMMING APPROCH

R T A A R A T

Ch. 1. Introduction to Computer, Algorithm, Flowchart
Turing Machine

Tur'mq machine:-A Turing machine is a hypothetical machine thought of by the

Mathematician Alan Turing in 1936. Despite its simplicity, the Machine can simulate ANY
Computer algorithm, no matter how complicated it is!

‘ [O !] 1 l 110 I Ol I l] A very simple representation of a Turing machine. It
consists of infinitely-long tape which acts like the
memory in a typical computer, or any other form of data storage. The squares on the tq
usually blank at the start and can be written with symbols. In this case, the machine cangnly
process the symbols 0 and 1 " " (Blank), and is Thus satd fo be a 3- symbols Turmgxm chi %"%’ o

t'

ﬁg(
W

tape. With Th:s head, the machine can
perform three very basic operations:

1 read the symbol on the square under
the head.

2 edit the symbol by writing a new
symbols or erasing it.

3 move the tape left of right by one

Action

Controller
Program

State

l Head

square so that the machine can read and Bj1y1ym 1 L Tape
edit the symbols on a neighbouring B,
square. ; %&%
The Von Neumann Ccmputer Model &
e Von Neumann computer systé } %]
main building blocks: comey= ¥ MEMORY ou;pur
» the central pr‘oce<sm « Keyboard : t Manitr
* memory, i H R LED"

e A

ey ting mfor‘mm‘.m out of the compute:

-

ihe other parts perforw ther fesks correct

i Mcke.s sure that ol

funs on a computer. It is en mferfoc
computer user and computer hordwars Cve
purpose computer must have an operating syst
other programs and applications. C:"':-‘e’

Systems performs basic tasks, such ds rec
from the keyboard, sending output to the &
keeping track of files and directories on *
controlling peripheral device such as printers

Notes prepared by Prof. VinayakManjrekar9664338174 / 022-25440393

F.E.SEM-1I STRUCTURED PROGRAMMING APPROCH

Operating systems provide a software platform on top of which other programs, called
application programs, can run. The application programs must be written to run on top of a
particular operating system. Your choice of operafing system, therefore, determines to a great

extent the application you can run. PCs, the most popular operating systems are DOS, 05/2,
and windowsBut others are available such as Linux.

Interacting with the operating systems :-

As a users, you normally interacting with the operating systems though a set of commands.

For example, the DOS operating system contents commands such as COPY and RENAME For
+ Copying Files and changing the names of files, respectively.

The commands are accepted and executed by a part of operating system called as ¢
processor or command line interpreter. Graphical user interfaces allow you to céom
pointing and clicking at objects that appear on the screen. Popular %c\)per'a’rig;g system
three most popular type of operating systems for personal and busifiess ¢d
Linux, windows and MAC.

Linux Operating Systems

Linux is freely distributed open source operating systems that run o nhumb
platforms. The Linux kernel was develop mainly by Linusg};or'vaid

Windows Operating systems b

Microsoft windowsis a family of operating Systems f
Windows dominates the personal computers world, of fé
Virtual memory management, multitasking, and supp
MAC Operating systems ,
MAC Os is official name of the appi
graphical users Interface (6UT) that
Macintosh computers have a similar us

tgga‘ ed on Unix.

ﬁggeﬁﬁ?ﬁng systems. MAC OS features a

ons and all applications that run cn a

* Multi-user:- Allows two or még sers 10 Fun programs at the same time. Some operating
e

systems permit hundreds or ev%ﬁ;thousands of concurrent users.
Mul‘mprocessmg:- Supports running;a program on more than one CPU.

* Multitasking:- Allows more than one programs to run Concurrently.

* Multithreading:#Allows Different parts of a single program to run concurrently.

* Real fime:-Responds te, input instantly. General -purpose operating systems, such as DOS

i e
g»"‘e "&i.*rr*‘e,

£ %
w

. .
ana U
a

BT e —
Notes prepared by Prof. VinayakManjrekar9664338174 / 022-25440393 Page 2

& & 11 e # i

r)

9 ¢ @)} 3 & OB G 6§ O PG OGC O DD OECEC OGL MO EE 1 N

VAL IEELIIE L3I dd Il dd1ddd

F.E.SEM-II STRUCTURED PROGRAMMING APPROCH

Positional Number System 1

1. Decimal Number System:-
Racdl?;/ Ba?emZ ?10 s /9 ~0 1 . Counting Scheme.
Symbol used =0,1,2,3,4,5,6,7,8,9. 8 2
1 ¥
v 3
X ¥
B 5«4
2. Octal Number system:-
Radix/ Base = 8 ~0 ™1_ Counting Sche
Symbol used = 0,1,2,3,4,5,6,7. 7 R ;
f 2
6 N
= 3
51-—4 '

3. Hexadecimal Number system:- Counting Spheme.E ' X 2
Radix/ Base = 16 e, Sae N ; X
Symbol used = 0,1,2,3,4,5,6,'/,8,9,A,B,C,D,E,;F s ?I‘:) 3;

. : . /
4 v
)
Bk\ J

4. Binary_Number system:- 0 Ry, A ‘/6
Radix/ Base = 2 ¢ 9. g+’
Symbol used = 0,1 ¢

. 1% Counting Scheme.

9810 =1 1000102

epared by Prof. VinayakManjrekar9664338174 / 022-25440393

2 | o8 ?
2 | 49 | o
2 | 24 1
2 | 12 0
2 6 0
2 3 o
| 2 1
' | o 1
————————

F.E. SEM - II

STRUCTURED PROGRAMMING APPROCH

Positional Number System

Conversions:-
Decimal - Octal
125

15| 5
1
0 |1

125,,=175,

OOOOI@

Conversions:-
Decimal - Hexadecimal

16 | 254
161258, 954 _FE
16 15 14I 107

0 |15

8 |51t
8 {637
8 1717
0|7
16| 182
1611 |6
0 |11

Binary - Decimal
1101012 = ?10

(1x2%)+(1x2%)+(0x2%)+(1x2%)+(0x2")+(1x2%)
32+16+0+4+0+1 = 53

110101, = 53,

1000001~ =9, 0

(1x26)+(0x25)+(0)\24)+(()x23)+(0x22)+(0x2 >+

”(1x2)

04+1—65

| 10000012 .

Ogtai - Decimal
177 -)10

1

| (1x82)+(2x8'y+(7x8") {1

3625 ="

(3x8%)+(6x8")+(2x8")

192+48+2=242

| 64+16+7 = 87
362, =242,
127, =87
2AC, =2,
4 $2f 7 (3x16%)+(14x16')+(2x16°)
| 2x165H{10x16")+(12x16)

512+160+12 =684 _

68+224+2 =994,

SE2, 16 99410
2 =
Notes prepared by Prof. VinayakManjrekar9664338174 / 022-25440393 Page 4

T G FPT)T

« o F P

"i ﬁ 'lk /b} ’fi

4

h

g € «

}

¢ € €

€ € 3 0

‘) el .I q q q

J E

[dddibdddtdbdddtdddtlidddtdddllidddidd

F.E.SEM-1I STRUCTURED PROGRAMMING APPROCH

Problem Definition:-In Computer programming i.e. when making a program we should have
well defined problem. In computer programming, the term problem is the task to be performed.
This problem has to be defined precisely so as to ensure the proper solution. This is one of the
very important aspects of the problem solving, that the problem should be well defined. The
problem defining has to undergo a various stages. The problem statement development begins
from initially defining the problem statement. The problem once defined, and then the attempt
should be made to solve the problem. You will come across many new things to be considered and
implemented and hence you can redefine the problem statement accordingly. Thereafter. scale

the problem statement can be defined and refined using the process. Once The _pro &
precnsely defmed then an algor‘l‘rhm is r‘equmed to implement the same. The algomfhﬁ'\“cé“n thenibe

"C,. The value of "P. and nc,

n!

e = Except the values of n & r
ri(n—r)!

Ex- 2 Accept a number from user and write ap
the entered number is an Armstrong nurrfb
ona2, for which the sum of the cubes -

|if it is present, LSE
| array,also find out how many. 3 ,fjn‘f:ered numbers are positive.

L ti'xe%gkeyboard by the user. Write a
rched is present in the array and

of times it appears in the

to be searched is entered tl
program to f£ind if the number

What is an Alqomfhm'>
Program = Algor‘n‘hms + Data
An dlgorithm’
effective procedure s0lving @iproblem in a finite number of sTeps
Here is an example: n%@ggjhm for making a pot of tea.

1. If the kéttle no¥ contain water, then fill the kettle.

{ to the power point and switch it on.

: %% teapotlissfiot empty, then empty the teapot.

a Ieaves in the teapot.

At The wq:rer' in the kettle is not boiling, then go step 5.
Switch of f the kettle.

:imp’wafer' from the kettle into the teapot.

It can be seen that the algorithm has a number of steps and that some steps (steps 1 3
and 5) involve decision making and one step (step 5 in this case) involves repetition = *his
case the process of waiting for the kettle to boil.

From this example, it is evident that algorithms show these three features:
» Seguence (also known as process)

» Decision (also known as selection)

* Repetition (also known as iteration or looping)

eSS]

s prepared by Prof. VinayakManijrekar9664338174 / 022-25440393 Page 5

FE.SEM-11 STRUCTURED PROGRAMMING APPROCH
Therefore, an algorithm can be stated usin i Isi

g three basic constructs: Sequence, decision, and

_repetition.

Ex:2:- Print the largest nm MAX to
three numbers store the largest number.

1. START 1. START

2. PRINT “ENTER THREE 2. PRINT “ENTER THREE NUMBERS”

NUMBERS * 3. INPUT A, B, C
3. INPUT A, B, C 4. MAX <«— 2
4. IF A >= B AND A >= C | 5. IF B > MAX

THEN PRINT A THEN MAX <— B
5. IFB >= C AND B >= A

6. IF C > MAX
THEN PRINT B THEN MAX <— C
ELSE

7. PRINT MaX
8. STOP

PRINT C
L 6. STOP

—
—
Ex:4:- Here, the afgomfhm uses a nested

if construct.

1. START 41
2. PRINT “ENTER THREE
NUMBERS "

3. INPUT &, B, C
4. IF A > B THEN
IF A > C THEN
PRINT A
ELSE
PRINT C
ELSE IF B > C THEN
PRINT B

ELSE

g

PRINT C
5. sTop

\
“——‘—“—jt_—‘fr—“f-‘:=ﬂ!=!5!!!!!==E!!!=!!!!!!5E!!!!!!!!555555555555555555555555
Notes prepared by Pror inayakManjrekar9664338174 / 022-25440393 Page 6

e

JddJILLJI LTI SIS LIS T

F.E.SEM -1l STRUCTURED PROGRAMMING APPROCH

Flowcharts:-A flowchart provides appropriate steps ©
to be followed in order TO-le‘f‘IVC at "rhe' solution to a Start o end of the program o
problem. It is a program design tool which is used before flowchart

writing the actual program. Flowcharts are generally
developed in the early stages of formulating computer
solutions.

A flowchart comprises a set of various standard
shaped boxes that are interconnected by flow lines. Flow

Computational steps or processing

function of a program B,
lines have arrows to indicate the direction of the flow of
control between the boxes. The activity to be performed E
is written within the boxes in English. Standards for Input entry or output display
flowcharts The following standards should be adhered to operation

while drawing flow charts.
o Flowcharts start on the top of the page and flow
down and to the right.
Only standard flowcharting symbols should be | A decision making and ﬁ;a{‘cr‘tings
used. English should be used in flowcharts, not ESTREAS/ SR S B RO
programming language. -
¢ The flowchart for each subroutine, if any, must O
% appear on a separate page. Each subroutine begin et raoli st of the
flowchart on the same page

.

* Draw arrows between symbols
and use arrowheads to indica
the logic fiow.

e e e

e e e e e]

{otes prepared by Prof. VinayakManjrekar9664338174 / 022-25440393 Page 7

F.E.SEM-1I STRUCTURED PROGRAMM[NGAPPRCH

Prepare a flowchart to read the marks of a
student and classify them into different
grades. If the marks secured are greater than
or equal to 90, the student is awarded Grade
A; If they are greater than or equal to 80 but READ AB,C
less than 20, Grade B is awarded: If they are

greater than or equal to 65 but less than 80,
Grade C is awarded; otherwise Grade D is |
awarded.

MARKS /

/' READ MARKS

Draw flowchart to find out the roots of
quadratic equation.

REAL1=(-B+SQRT(D)/(2°A)
‘| REAL2=(-B-SQRT{D)2A)

REAL1=-B/2*A
REAL2=—B/2*A

PRINT / /PRNTABC / /PRINTABC A
“COMPLEX REAL1, / REALT,
ROOTS" REAL2 / REAL2

H

t f J

|

i
/ PRINT GRADE /
)
sTOP
e

Algorithem & flowchart to fi

l,/"ﬁ—-——*\
product of all the digit of nuimbs ‘__bmm
loop.
/ PRINT * Enter a number” /
Step 1: START 1
Step 2: PRINT "Enteraf . L :NPng /
Step 3: ,
Step 4: [sum=0, prod=1 [
Yes
Is n=0?
No
digit = n mod 10
Sumt = Sum + digit
prod = prod*digit
n=n/10

/ PRINT sum. prod /7

STOP
" — s
e —— R W I W e—— —
Notes pregars inayakManirekar9664338174 / 022-25440393 Page &

£8P ™ ™My T P 2 £) Nk

}

€ 1

L

L)

‘-H/
\
" 4
—
o
‘*
\
\
w
\
-
\
—
‘*7;
—
w
\
o

.
~
—
-
—
-
—
N
S
\
w

—
L
T
-%
\

+

‘\
—
—
—
—
-

\ —
-
\
-
S

F.E. SEM - 11

Algorithem & flowchart to find the factorial
of anumber.

Step 1: START

Step 2: PRINT "Enter a number".
Step 3: INPUT n.
Step4:i=1,fact=1

Step 5: IF i>n THEN GOTO step 9.
Step 6: fact = fact*i.
Step7:i=i+1

Step 8: 6OTO step 5

Step 9: PRONT fact

Step 10: STOP.

START

/ PRINT ™ Enter a number”
/ INPUT n /
1=1, fact 1

<

l fact = fact®i i

/ PRINT fact

{ STOP)

STRUCTURED PROGRAMMING APPROCH

| Algorithem & flowchart to display” first n
Fibonacci numbers.

Step 11 START

Step 2: PRINT "Enter a number".
| Step 3: INPUT n.

Step 4: i=1, a=0,b=1
Step 5: PRINT a,b

Step 6: IF i>n-2, THgigJWGOTO step 12%

Step7:c=a+b & ‘{% i
Step 8: PRINT ¢

Step 9: a=b b=c. &

Step 10: izi+l

Step 11: 6OTO §+ep

STep 12: STQP

START

/ PRINT * Enter a number”

'
/ INPUT n /

+
[=1,a=0,0=1 |

!
/ PRINT a,b /

s QL L ADIO
a exarso54536

Page 9

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
CH 2. Basics of ¢
LH ¢. Basics of C

2.1 Importance of C:-'C'is one of the most popular computer languages today because it
is a structured, high-level, machine independent language. The increasing popularity of C is
probably due to its many desirable qualities. Tt is most robust language whose rich set of built-in
functions and operators can be used to write any complex program. The ¢ complier combines the

powerful operators. There are only 32 keywords and its strength lies in its built-in funci
Several standard functions are available which can be used for developing pr'ogmms.@g?i

porfable. This means that ¢ programs written for one computer can be run on anofhegfi w
or no modification. A

are supported by the ¢ librd};;f. w
functions to ¢ library. With the availability of a large number &
becomes simple.

2.2 Getting started with C:-The classical method o lear
alphabets used in the language, then learn’ to cqvmbiqéjhes“e;a
turn are combined to form sent c % 3

d.special symbols rg used in C, then how using them, constants,
variables and keywords are consiruc inally how are these combined to form an

instructions which would be combine\%f ter to form a program.
——— % - ———“—-—~*~“—*“7

C2-p1:-
#include<stdio
int main ()

float numl,nuﬁ%,é%m,aveﬁ% |
clrscr() ; P @
Printf ("Enter 2 na ‘
scanf("%§ﬁ%§§

sum=numl+n
o ;

o

|
= %f \n",sum); ,
ge = $f",ave) ; {

The C Program is a collection of functions. The above example centains only one function, main().
s usual, execution begins et main(). Every C program must have a main(). C is a free from
2uage. With a few exceptions, the compiler ignores carriage return and white spaces. The ¢

~ “'=7ents terminate with semicolons.
== The C comment Symbols /*----*/ gre suitable for multiline comments. The following

fdd I L SINL S SIS SIS SIS IS LTI IS

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
%
Return Type of main() : In above C program, main() returns an integer type value to the
operating system. Therefore, main() should end with a return (0) statement: otherwise a

warning or an error might occur. In some compiler main() can also be declared to return void.

Beginning of End of
comment comment
Includes the contents of the ¥ A
1 i .~ *\\ 5 r’* Sy
extgmal il Irfie s prograth ¥ A simple C program {*/} The standard header file
JS S that provides Input out funclions &

Preprocessor directive ————~—=:"2" include 3 ¢stdio. hy) <——— like printf() which displays

he 7 Ml -~ information an the screen b
Indicates an integer value — i . L N
is retumed to the operating ———{int}main{(void)’ « Nothing is passed to main()
system from main() o T o

. A library function declared
SmnloemndmnsmamO———_+{£) MSmmfnmedwpﬁmgny

data on the video monitor
27T S screen. Here 'C is Sea'

retums the value O to the _ {printf (“C is Sea \n”3 YD will be displavad
operating system or operating A =y played.
snvironment to ingﬁcate that e . it is an escape sequence that
the program terminated ~(return @;; causes the cursor to be placed
normally; anonzerovalue | TTee--en at the beginning of the next
would lndlpate an abnprma! ey line of output
return, which means, inother . | <} . :
words, things were not as they Statement terminator
should be when the program - ‘
ended. End of the

function main()

e
|

2.3 C Character Set

Letters o
Uppercase A..... Z . 3 \ sdecimal digits 0..... 9
Lowercase a...... z . -
laracters
, comma | & ampersand
period A caret
; semicolon *asterisk
colon - minus sign
? question mar + plus sign
apostrophe . < opening angle bracket
(or less than sign)
> closing angle bracket
(or greater than sign)

(left parenthesis
) right parenthesis
[left bracket

ur] right bracket

$ %ﬁxﬁ}ar sign { left brace
}
#

$ pexéeht sign right brace
ﬁﬁ number sign
White Spaces
Blank space
Horizontal lab
| Carriage return
New line
Form feed

Notes prepared by Prof. Manjrekar

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

2.4 C TOKENS: -1n a passage of text, individual words and punctuation marks are called
tokens. Similarly, in a C program the smallest individual units are known as C tokens. C has six

types of tokens.
(C TOKENS]

S/

—

[Keywords] [Constants j (Strings] Operators

float -15.5 “ABC”
ile 100 “year”
(Identifiers 7]
main
nount {}

Keywords and Identifiers:-Every ¢ word is classified3as

- N
identifier. AH keywords have fixed meanings and Thesef eanthgs ca no‘r be changed. Keywords

underscore character is also P

words in jong identifiars.
Constants in C refer to fixed vaﬁ’j

supports several types

%

of:constants. %,

) 4
) &
constants: -
CONSTANT
Numeric constants Character constants
/ \ /\ !
tant Real constants Single Character Constants String constants |
|
S & Sacksash Character ConsTanTs- C supports some special backslash character constants
Thet are d m

jrekar 9664338174 / 022-25440393

]
)

e, Aap P E #3 (P

‘E 7E W)

i

¥

7

—

S~ F.E SEM-II STRUCTURED PROGRAMMING APPROACH
although they consist of two characters. These characters combinations are known as escape
sequences.

Constants Meaning
“\a’ audible alert (bell)
“\b’ back space
\E’ form feed
‘\n’ new line
“\r’ carriage return
"\t horizontal tab
“\v’ vertical tab
N single quote
Ve double quote
\?/ question mark
1 backslash
*\0’ null

-

2.7 Rules for Constructing Integer constants:-

1) An integer constant must have at least one digit.

2)It must not have a decimal point.

3)It can be either positive or negative.

4)If no sign precedes integer constants it is assumed to be po

5)No commas or blanks are allowed within an integer constant.

6) The allowable range for integer constants is -32768 27
Ex: 426 +782 - 8000 +7605 "

Reai constants are cften called Floating point constants. The real constants couid be written in
two forms - Fractional form and Exponential form.
Follewing rules must be obsarved whzle conmr»_chro real constants expressed in fractional

form:- U Y
a] A real constant must have at least ongygigit
b] It must have a deafnaT point. y
=
c¢] It could be either posﬁg or negative
d] Default sign is positi¥e s

.......

Jdddd LIl d LI IS

F.E SEM-II

STRUCTURED PROGRAMMING APPROACH

1l

"

‘b W @, N8, L. r} W,

fL

| _Keywords Description
auto Declares an automatic variable, its memory is allocated by the compiler for the
duration of its existence.
break Terminates the execution of the closest enclosing loop or conditional statement in
which it appears. -
case Allow execution of list of groups of statements.
char Represents a character data type.
const. Specifies that the object or a variable have a constant value that cannot be
changed.
default Used with switch statement that indicates the specified action should be takeh
no other actions are appropriate. il
do Used with while statement to construct a loop that needs to be execut: “ath
i once. Y
}ﬂmble Represents a real-number value. , :
else Used with if, to execute set of statements according to the results,of a comparison
N statement. e 4
extern Indicates that a statement used in one program module;
programmodule.
float Indicates a floating-point, real number data element./
for Constructs a loop that needs to execute for a spegi |
goto Allows switching to a specified place in a fun .
if Executes statement if a condition is true. |
long
main Indicates the starting position of exeZution forail !
| register Specifies that the variablefis:to be 'storéd in a. CPU register and not in the memory.
return | Termincates the execution o a funcﬁon’f'{;mdfre’rum control to the calling function.
short Specifies a sherter version o p]r!iciffar data type with a smaller range of values
to be used. A ’
signed Specifies that the datg typelficcept positive and negative values.
sizeof Specifies the amount ofﬁhe storage in bytes, required to store an object of the
type of #the operand. Ny
)| static s that the variable Ras static duration and initialized it fo zero, unless some
struct Specifies a user-defined type that comprises of members of different data types.
switch Al!_gﬁ?s'%:"%lgcfi‘c‘)@?ﬁnong multiple selection of code depending on the value of the
ex fﬁcessio@g
2.1 "Declares a dser - define dota type.
4D ser-defined data or class type that contains only one object from its list
oﬁmgmbers.)
: Indicates that the variable only takes positive values,
| voidgh, Specifies that the function does not return a value.
| volatil@| Indicates that a variable or an object can be modified by another part of the
B “ | program.
ile ‘

! Executes statements repeatedly, until expression evaluates to zero. |

Notes prepased by Prof Manjreka; 9664338174 / 022-25440393 Page 14

LAl LLddLEd il dddidddiddddibdddidddd

/.

F.E SEM-II
2.11 BASIC DATA TYPES:-Data types in C can be classified under various categories as

shown

STRUCTURED PROGRAMMING APPROACH

C++ Data types

User-defined type

4
] void !

[In‘regr‘ai type

| char |

Derived type

structure Built-in type array
union function
class pointer
enumeration reference

LFiom‘mg fype

2.12 Size and range of C Basic Data type for 16 brr compufe y

Type Bytes

Range

Char or signed char 1

-128 to 127

unsigned char

long int

signed long int

-2147483648 to 2147483647
12147483648 +to 2147483%

1 0 to 255
int or signed int 2 ¢
unsigned int Z - 2 <
short int 2 -32768 1’0 32767
unsigned short int Zf<_ Q fo 65535

2

4

unsigned long int

Quto 4294967295

_Float -34238 to 342383
Double | -1.7e308 10 172308
long double -3424837 to 34240322

printf() and sgm%%()

1. Charactef that are snmphfy printed as they are

The ‘funcT ons printf () and scanf () fall under the cafegory
formatted consolgﬁI/’O cﬁ . These functions aliow us to supply the nput ma f
t in the specific form
rintf statement is
rlntf(“(for:a- string>”, <list of wvariables>

2. Convefsion specification that begin with 2 % sign

3. Escape sequences that being with o~

' DATA TYPE FORMAT

Character

o

(]

String

=

/o

Integer - decimal l

€ | ta

|
|

e N R

N

oies prepared by Prof. Manjrekar

9664338174 / 022-25440323

yEM-II STRUCTURED PROGRAMMING APPROACH
Integer - octal : %0
_Integer - hexadecimal 70X
Long integer - decimal % 1d
Long integer - octal %[0
Long integer - hexadecimal % [X
Float %f
| Double % [t
| Long double %Ld

Printf(_) with Field width specifier:-The field width specifier tells printf() how

columns on screen should be used while printing a value. For example, %10d says #ptin
variable as a decimal integer in a field of 10 columns.” If the value to be Erim‘ed baﬁ&eng n
fill up the entire field, the value is right justified and is padded with blanks onéthe left
include the minus sign in conversion specification (as in %-10d), this mean :

desired and the value will be padded with blanks on the right.
Scme systems also support a special field specification

tﬂét lets

the user define the field size at the run time. This ¥ following
form: &
printf(“%*.*”, width, precision, number); e
In this case, both the field width and the preci arguments

which will supply the values for w"and p. For
printf (“§*. . *xf7 7, 2, number);i
is equivalent to
printf (“§7.2£", number) ;
The advantage of this format is that

-

4 dynamic one. For example,

int width = 7;
int precision = 2;

printf (W% *f i pPrecision, number) ;
2.14 Formatted Inpit- Scanf .
Scanf() allows us 1o enter data form keypad that will be formatted in a certain way.

The general form of scanf() statement is as follows:
mat stfing”, list of addresses of variables) ;

3}%“}
: W, # scanf(“%d3fic,sc,sa, &ch) ;

Notéfthay we aéfe sending addresses of variables (addresses are obtained by using
'&Tbei“‘ddgr;g%e “operator) to scanf function. This necessary because the values received
p fom keﬁféoard fmust be dropped into variables corresponding to these addresses. The valuzs
suppliedsthrough keyboard must be separated by blanks(s), tab(s), or newline(s).
Consi&é‘%% e following example:

% scanf (“%$2d %547, &numl, &num?) ;

suppose the Data is as follows:

50 31426

The variable num1 will be assigned 31 (because of %2d) and num2 will be assigned 426

-read part of 31426). The value 50 that is unread will be assigned to the first variable in the

T scanf call, *
T happens if we enter a floating point number instead of an integer? The fractional part
™ay D= sTripped awayl

Scanf may skip reading further input.An input field mav be sk

field width. For

the. statement

Notes prepared & >- { Manjrekar 9664338174 / 022-25440393 Page

'y]

- P (’ - ”~,

B

/./././.1 VLTSI ddd b ddd b dd bt ddtrdd]

F.E SEM-II

scanf (“%d
will assign the data

123 456 789
as follows:

123 to a

&a,

&b)

456 skipped (because of *)

789 to b

STRUCTURED PROGRAMMING APPROACH
3*d $d”,

C2-P2:-
#include<stdio.h>
int main ()
{ int x
clrsecr () ;
printf ("%d\n",x) ;
printf ("%$6d\n",x) ;
printf ("%4d\n",x) ;
printf ("%06d\n",x) ;
printf ("%04d\n",x) ;
printf ("%$2d\n",x) ;
getch () ;
return(0); }

123;

C2-P3: -
#include<stdio.h>
int main ()
{ float x
zclrser () ;
printf ("$£f\n" ,x) ;
printf("%12£\n",x) ;
printf("%.3£f\n",x);
printf ("%$12.3f\n",x) ;
printf("%012.3£f\n",x);
getch() ;

return (0) ;

1.23456;

}

C2-P4:- WAP to pri

ASCIT value of any characte

H

2.15 getch(), getche

), getchar(), pufch()l and putchar{) functions :

We often wan

.

3
Q_
ne)
=
S
O
BA
~~
=
=

(]

- |

”
-
(4]

(]

-4

o

]

b |

n

hie working is concern they are exa

function that wil
b &= - 3
key<io be hit
r‘e‘fun th

=Y

read a singse

<

r that you typed on the screen
yDed on screen f

~ — -

- -~

-

('8}

o m————— s el
cnaracies 19a

yped.

-

= .

PO TR S .

.- L e

s the character that y

just eTurns the characte
STRe character that ye
|lowmg The character to be

——— -

&)

f the coin. They print a character on the

ctly same. The

P —
L] (

C2-P5:-
#include<stdio.h>
int main()

{char ch='A"';
clrscr() ;

putch (ch) ;
putchar (ch) ;

printf ("\n Press any key to contiue

n).
r

vies nrepared by Prof. Manijrekar

0664338174 / 022-25440393

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

ch = getch() ; /*WILL NOT ECHO THE CHARACTER*/

printf ("\n you entered : ");

putch (ch) ; /*WILL DISPLAY THE CHARACTER*/
printf ("\n Type any character ") ;

getche(); /*WILL ECHO THE CHARACTER* /
printf ("\n Type an

Press any key to contiue
you entered : j

Type any character - P
Type any character then press Enter:

d

2.16 C Instructions:- There are basically three type of instruction in
1] Type Declaration Instruction,
2] Arithinetic Instruction.

3] Control Instruction.

Type Declaration Instruction:

float a = 1.5, b =1.99 ‘
[b] The order in which we define the variables j
float b =a + 3.1,
[c] The foliowing statements woqti
int a,b,c; .
a =b=c¢c = 10; &,
However, the followingfsm’remen’r would 1

inta=b=c=1§3;

i

0 use b (to assign to a) before defining it.

i

metic instruction consists of a varigble name on the left hand
, tants on the right hand side of =. The variables and constant
d side of = are connected by arithmetic operations like +-*, and /.

side of = and varigble nar
appearing on 1‘5% it
EX&‘@?% int, ad;
g g"’rf loa“t;{%cﬂlelta, alpha, beta, gamma ;
Jad = 3200 ;
&%ﬁ delta = alpha* beta / gamma + 3.2+ 215;
A Ca fﬁmeﬂc statement could be three types. These are as follow:-

[a] Integepr'mode arithmetic statement This is an arithmetic statement in which ali operands are
2ither integer variable or integer constants.
X' - int i, 3, k :

i=41i+ 1;

J= k*234 + i - 7gg9.
== mode arithmetic statement- This is an arithmetic statement in which all operands are
: -onstant or real variables.

Elocat b,c,d,e,f ;

11 &=
i

I p

*e*f / 100.0;

otes prepared by danirekar 9664338174/ 022-25440393 e 18

LTSI S PR

F.E SEM-I1 STRUCTURED PROGRAMMING APPROACH

[c] Mixed mode arithmetic statement - This is an arithmetic statement in which some of the
operands are integers and some of the operands are real.

Ex:- float p,q,r,s,avg;

int a, b, ¢, num;

p=gqg*r *s/ 100.0;

avg = (at b+ c + num) /4;

I+ is very important to understand how the execution of an arithmetic statement takes place.
Firstly. the right hand side is evaluated using constants and the numerical values stored in the
variable names. This value is then assigned to the variable on the Jeft-hand side.

N

[.] C allows only one variable on left-hand side of =. That is, z =k*1 is Jegal, whereas k*1 = z
illegal. M furay Hre auo hed, e apdodite :
[.]1 In addition to the division operator, returns the remainder on dividing one_fiite
another. Thus the expression 10/2 vields 5, whereas, 10% 2 yield O. &?&te ﬂfgf f;le%g
operator (%) cannot be applied on a float. Also note that on using % the sign of. the rem
always same as _the sign of the numerator. Thus -5 % 2 yields -1, whereas, 5.% -2g > b’s‘k
[.] An arithmetic instruction is often used for storing character const 1ts ;ﬁ%}chg‘r‘aéjer
variables. YR

char a, b, d; &
a = ‘F’;
b = ‘G’ ;
d = \+I,.

When we do this the ASCIT values of the characters are stored in the variables. ASCIT values

are used to represent any character in memory. The ASCII values:of Fand 'G' are 70 and 71.

[] Arithmetic operations can be performed on inféfjfloqfézaqd‘;cﬁCrs.~Thus the statements,
schar x, ¥/ . . WA G4
~int z;

x = ‘a’;
\bl .
4

b4
z x+y;

i,

are perfectly valid, since the addition E perfé{‘mfd on the ASCII values of the characters and
not on character Them,sﬁ?%;ves. The A @%ﬁ\‘{alues of 'a’ and b’ are S7 and 98, and hence can
definitely be added. { 4
2.17 L values and’Rivalue$
An lvalue is an egﬁ%@gn Swhich a value can be essigned. An rvciue con o defined as an
expression ’r%a}f can be dssianed to an lvalue. The lvalue expressan = ocated on the side
of ,&asvsigg;gen

5
£

= . = Lacon® o PR . e - e g AN J—
-2where as an rvaluz is locoTEC @ e right sde of an essignmen
N -

0 i,ibe’o constant for exompie, consicer The following statements -
&

+ b;

;

the above cases, the left sice of The saTement co not represest storabie
locations in memory. Therefore, Thesz Two assignmen” statement do not camf@n ivaiue

and will generate compiler errors.

2.18 INCREMENT AND DECREMENT OPERATORS
¢ allows two very useful operators not generaiy found in other lang
ncrement and decrement operators:

sages. These are the

++and - -

e nrenared by Prof. Manjrekar 0664338174 / 022-25440393 Page 19

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

The operator ++ adds 1 to the operand, while - - subtracts 1. Both# are unary operators
and takes the following forms:

++Mm, or m++,;

--m;orm--;

++m; is equivalent to m = m+1; (or m += 1;)

- -m; is equivalent to m = m-1; (or m -= 1,)
We use the increment and decrement statements in for and while loops extensively.
While ++m and m++ mean the same thing when they form statements independently, they

behave differently when they are used in expressions on the right-hand side of an ;
assignment statement. B
Consider the following:

m=5;
Y - ++m:
In this case, the value of y and m would be 6. Suppose, if we rewrif
statements as
m = B; ©
Y = m++; £ . X
then, the value of y would be 5 and m would be 6. A prefix ope r first adds 1 to the
1. Qn the other hand, a

posttix operator first assigns the value to the vari ble on left and then increments the
operand.

Rules for ++ and - - Opercators

. Increment and decrement operators are unary operators and they reqtiire
variable as their operands.
" When postfix ++ (or - -) is used with a variable in an expression, the

expression is evaluated first using the original value of the value and the variable
is incremented (or decremented) by one.

. When prefix ++(or - -) is used in an expression, the variable is incremented
(or decremented) first and then the expression is evaluated using the new value of
the variable.

® The precedence and associatively of ++and - - operators are the same as
*| those of unary + and unary -.

e

SPECTAL,OPERATORS

C supports some special operators of interest such as comma operator, size of operator,
pointer operators (& and *) and member selection operators (. and ->).

- 1% The Comma Operator .
~ "= comma operator can be used to link the related expressions tfogether. A comma-
“= 157 of expressions are evaluated feft to right and the value of right-most
SHETEE=an s the value of the combined expression. For example, the statement
value = (x = 10, y = 5, x+y);
\“\%

Notes prepared by Prof Manjrekar 9664338174 / 022-25440393 Page 2

r ¢ e r 3

e

}

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10+5) to
value. Since comma operator has the lowest precedence of all operators, the
parentheses are necessary.dpplications of comma operator are:
Infor loops:for (n=1, m= 10, n<=m; n++, m++)
In while loops:while (¢ = getchar(), ¢ ! = '10)
2.20 The size of Operator
The sizeof is a compile time operator and, when used with an operand, it returns the
number of bytes the operand occupies. The operand may be a variable, a constant or
data type qualifier.
Examples: m = sizeof (sum);
= sizeof(long int);
The sizeofoperator is normally used to determine the lengths oﬁ;array%dnd’
structures when their sizes are not known to the programmer. ’

Associativity can be of two types left to right or righfto lef
means that the left operand must be unambiguous. It mus
of any other sub- expression.

Similarly, in case of right to left associativity the right.operand mus
Consider the express:on

a=3/2%*5
Since both / and * have L & R associa
performed earlier.

Consider one more expression,

hT assoma‘rlw’ry
involved in evaluation
=

be unambiguous.

y and 6nly’ /- has unambiguous left operand, it is

[LSS TSI dd

a=b=3;
Since both = have R to L associativity, and Only the second = has unambiguous right operand
(necessary condition fo‘@% tol assocxahv"ry} the second = is performed earfier
‘%\
2.22 Order of precedence of Operator in C:-
Type of Operator Ordcr
Unary i X -~ 1 s -
Multiplicativesa [* / %
—= < -—
<O>>>>
< =>=>
&
&5
Cofiditional ?
Assignment E =4+ =-=* = = 3 =
2.23 Hierarchy of operation: - :
Priority | Operators Description L4l -
g */ % Maultiplication, division, modular division
2rd + - Addifion, Subiraction
| 3= 3 Assignment

/.

e ———————————————————————————————— e e
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Pace

(]
Naar

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

Stepwise valuation of i=2*3/4+4/4+8-2+5/8 this expression is shown below:
i = 2%*3/4+4/4+8-2+5/8

i = 6/4+4/4+8-2+5/8 Operation = *
i = 1+4/4+8-2+45/8 Operation = /
i = 1+1+48-2+5/8 Operation = /
i = 1+1+8-2+40 Operation = /
i = 2+8-2+0 Operation = +
i = 10-2+0 Operation = +
i = 8+0 Operation = -
i=28 Operation = +
Algebraic Expression C Expression
axb-cxd a*b-c*d
(m +n) (a+b) (m+n)*(a+b)
3x2 4 2% 45 3*x*x +2*x+5
a+b+c (a+b+c)/(d+e)
d+e
2By x 2*b*y/(d+1)-x/3
d+1 3(z+y) :

2.24 Bitwise Operators

Operators Meaning
&
|

~

~

<<

>>

>>

shn“r‘» gn’r with zero fill

-

Functioning of Bit-wise Operators :- The following table shows the operation of the four

Bitwise operators & &T'j ~

A T @ A|B AsB AB | ~A
0 D 0 0 1
1 0 1 1
L 0 1 0
1 1 1 o
ol the bits of its eperand For example, the number 24 which
after thefNOT (~) operater is applied
The bit-wise NOT operafer is also called as bif-wise compiement operaior
The bitwise assignment operagtors can be listec as, &= = =
Consider the following examples.
Operation Equivalent Operation i
la & = b; a=aé&b; |
c | =4d c=c | 4;
e ~ = £ e =e *£f; |

Varlables ab,cde& f are of type Boolean

M
o

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 22

PP P I L s s A

E At

Il gLl ddi i dditddild

F.E SEM-11 STRUCTURED PROGRAMMING APPROACH

2.25 Bitwise Shift Operators:-The shift operators are used to move bit patterns either to
the left or to the right. The shift operators are represented by the symbols« and »
~ Left shift:-The left-shift operation cause all the bits in the operand op to be shifted to the

left by n positions. The leftmost 7 bits in the original bit pattern will be lost and rightmost 7 bits
positions that are vacated will be filled with Os.

7 Right shift:-The right-shift operation cause all the bits in the operand op to be shifted to the

right by n positions. The rightmost # bits will be lost. The leftmost n bit positions that are
vacated will be filled with zero, if the op is positive integer. If the variable to be shifted is

negative, then the operation preserves the high-order bit of 1 and sh:f’rs only the lower 31 bits
to the right. /

Let int n = 0100 1001 1100 1011
Then, n<<3= 01ico 1110 0101 1000
n>>3= 0000 1001 0011 1001

Consider the following statement:
= m << 1
Thls sTaTemen‘r shifts one bit to The Ief’r in mand ‘rhen The resul

S cl
¥ =) renlt L’j 24
(,:’:‘In this case, the va/ue

‘¢ @ |

n=m>>1

| Cc2-p6:- ,]
' o/ =6 £ b2
#include<stdio.h> F.] REk &9 .
; : Qgrd (W o'yt s A7
int main() | j 4
{ int a=6,b= 72; /U ([T ¢ by p<= 1=
clrscr () ; :) o A b'" b>n2
printf("a = %d & b = . % = \ ‘b N b<<
printf ("Right shift a by & :a>>k= 3d \n", (=>>1 o M | -
printf ("Left shift a by 1 *ﬂa<<1’§— g¢d \n" a<<1
printf ("Right Shlft b by 3 b>>3 = %d \n" b>>3
prlntf("Left Shlft b by 3 b<<3 = %d n b<<{3
getch() w2 y
return(0) ; .
} ;._4.‘ .
2. 26In‘reqer',§,an@FIoa'r Conversions -
na n‘hmehc op@non between an infeger and infeger clways wield an infeger result.
, D o%be‘rweenanm teger and real aways yields a real resuft.
”*5['(:} opem‘ho 5etWeen an infeger and real ahways yields o rex’ result. In this operation the

flr‘ST g‘omofed to a real and then the operafion is

L o

(=]

«:":rmed. Hence the result is

real
“l" Operation | Result Operation Result '
5/2 -3 2/5 0]
5.0/2 25 20/5 04
5/2.0 25 2/50 04
5.0/2.0 25 20/5.0 04

-

2.27 TYPE CONVERSIONS IN EXPRESSIONS

=5 nrepared by Prof. Manjrekar 0664338174 / 022-2544(393 Pa

F.E SEM-I1 STRUCTURED PROGRAMMING APPROACH

Implicit Type Conversion

C permits mixing of constants and » | - long double 1/
. . , / [.. -double J/

variables of different types inan i s 7

expression. C automatically converts any A rElated dong VA

intermediate values to the proper type so /,/ [Torgint |/

that the expression can be evaluated /[unsigned int 7 - .xf,

without using any significance. This /o s it

automatic conversion is known as fype
conversion.

During the evaluation it adheres to
very strict rules of type conversion. If the operands are of different types, ’rﬁm'fm low ‘r
type is automatically converted to ’rhe hlgher Type before the operation proceed .
result is of the higher type. o

The final resuit of an expression is convem‘ed to the type of the vaﬁ blesrithe left
of the assignment sign before assigning the value fo it. However, e ollowm J:.changes
are introduced during the final assignment. |
1. float 7o int causes truncation of the fractional par"r

2. double to float causes rounding of digits.
3. long int to int causes dropping of the excess higher

Arithmetic Instruction Result Result
(K is integer)

K=2/9 0.0
K =2.0/9 0.2222
K= 2/9.0 0.2222
K=2.0/9.0 0.2222
K = 9/2 4.0
K=9.0/2 4.5
K = 9/2.0 B 4.5
K = 9.0/2.0 4.5

Sxplicit Conversion ¢ &
nave just disctiSged performs type conversion automatically. However, there
stances when we Want“to force a fype convers:on ina way, ’rhcn‘ is dlfferem' fr‘om the

j ’ € T\ ﬂ; <~ ,, P !/ o /1A {
i‘?; = - N WA A" o \ c = Hu al (/) r 22

-
L

-
-

i

i -2 declared as integers in the program, the decimal part of the result
- +he Siison would be lost and ¢ would represent a wrong figure. This problem can be
selved by comverting locally one of the variables of the floating point as shown below:

c= (float) a/b;
-z operator (float) converts the ato the floating point for the purpose of evaluation

+% #hz expression. Then using the rule of automatic conversion, the division is performed
n flac®ing point mode, thus retaining the fractional part of result

The orocess of such a local conversion is known as explicit conversion or casting a
value. The general form of a cast is:
(-pame e xXpression

Notes prepared ov Prof. Manwekar 0664338174 / 022-25440393 Paoe 24

2 pFp P = ¥

-

4

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

W
When type-name is one of the standard C data types. The expressions may be a constant,
variable or an expression.

Use of Casts

Example Action
X=(int)7.5 7.5 is converted to integer by truncation.
a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be
5.
b = (double)sun/n Division is done in floating point mode.
4 |y = (int) (a+b) The result of atb is converted to integer.
#! z = (int)atb a is converted to integer and then added.to
b- F
p = cos((double)x)

such a constant is 3.142, representing the value of the ma‘rhemahcal ‘con)

We may like to change the value of “pi* from 3.142 1o'3. 1415) \to improve the accuracy of
caleulations. We will have to search throughout the program and exphaﬂy change the value of
the constant wherever it has been used. If any value is lef‘r unchanged the program may produce
disastrous outputs.

Assignment of such constants to a symbolic name fr‘ees us from these probferrs

Valid examples of constant definitions are:s
#define STRENGTH 100
#define PASS MARK 50
#define MAX 200
#define PI 3. 14158,

The following rules apply to a #def:.ne statement which define
[1] Symbolic names have the same: form as w—mb 2 momes

CAPITALS to visually dashngunsh them? {rom the normal varictie mames, which are weitten i
lowercase letters. This is only a convention not a rule

[2] No blank space beT' fh the pound sign "# and the word define is permitted

[3] # must be the firstcharactemin ‘*e nz

[4] A blank spacgﬁg%gqumed between Zdefine and symbolic name and between the symbolic
name and the consTanT‘"“*) 4

[5] #define s{m%enfs mgusf not end with a semicolon
[6] Aﬁer%dé%&::n‘ihesvmbohc name shou

moT be assigned any other value within program by
ysing an asmgnm‘:’r statement. For exa

E NGTH = 200; is illegal.

[7] ‘qymbohc names are NOT DECLARED :: TA TYPES. Ifs data type depends on the type

[8] #defin E::;s"l'afemenfs may appear amywhere in the program but before it is referenced in the
program (the usual practice is to place them in the beginning of the program).

Examples of Invalid # define statements

Statement Validity Remark

#define x = 2.5 Invalid | =" sign is not allowed

define MAX ARRAY10 | Invalid No white space between & and define |
#define n 25; Invalid No semicolon at the end

#define N 5, M 10 Invalid | A statement can define only one name

_%—

AT

votes prepared by Prof. Manirekar 0664338174 / 02225440302 Dags I

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
#Define ARRAY 11 Invalid define should be in lowercase letters

#define PRICES) 100 Invalid

2.29 PREPROCESSOR DIRECTIVES:-
The pre-processor statements starts with a special character '# and does not end with '

The pre-processor sees the program file before it is seen by the complier. “The pre- processor ‘
reads the statements in the program and identifies enee that starts with the special |
character '#'. These statements are called as ‘directives’ becausa they gives direction to the
pre-processor to take certain action after reading these directives.

The pre-processor thus after reading these directives, remove these from the soure
program and instead takes the actions accordingly as directed by the directives. &
The pre pr‘ocessor‘ removes all the dlrec’rnves i.e. the sfm‘emen’rs that sTarTs w:’rh

$ symbol is not permitted in name

as it needs to be linked with the library files. The linker does this jot
code with The sTandar‘d library files to get the execufable code :

| can include the o’rher program file defining different; funcﬂon or y Y
containing function main(). - o

0okt - Library function
Function K5 T—i;prpose 3 , Include File
2bs (1) % geturn the absolute value of i. stdlib.h
acos (d) ‘Return the cos inverse of d. math.h
asin (d) ¥ Return the sine inverse of d. math.h
‘i.@b‘_i» ’ double | Return the tan inverse of d. math.h
S22enl (21,42 double | Return the tan inverse of d1/d2. math.h
z Z%‘ double | Convert string s to a double-precision quantity. stdlib.h
2toiQgs) n Convert string s to an integer. stdlib.h
20l (s ong Convert string s to a long integer. stdlib.h
calloc ful,u2) | void* Allocate memory for an array having ul elements, each of | malloc.h,
ength u2 bytes. Return a pointer to the beginning of the or
zll0cats space. stdlib.h
ceil (d) double | Return a value rounded up to the next higher integer. math.h
ceos (< doubie Fe‘., n the cosine of d. math.h
cosa ic double | Return the hyperbolic cosine of d. math.h
ex2tT (m void ; Clos= 2 Ti"es and buffers, and terminate the program. | stdlib.h
| ! (Va u is assigned by function, to indicate termination

- f

r__
vy
4
o)

—
1
LA

Notes prepared by Prof Manjrekar 9664338174/ 022-25440393 Page 2

n a0 PP NN

T P

Y
F.E SEM-I1 "ype. STRUCTURED PROGRAMMING APPROACH
s D
exp (d) double | Raise e to the power d math.h
fabs (d) double | Return the absolute value of d. math.h
fclose (f) int Close file f. Return 0 if successfully closed. stdio.h
feof (f) int Determine if an end-of-file condition has been reached. stdio.h
If so, return a nonzero value; otherwise, return 0.
fgetc (f) int Enter a single character from file f. stdio.h
fgets (s, i, char* | Enter string s, containing i characters, from file f. stdio.h
f) POR bt
| floor (d) double | Return a value rounded down to the next lower integer. math.h
,5{ fmod (d1,d2) |double’ | Return the remainder of d1/d2 (with same signasd1).) | math.h
fopen (s1,s2) | file* _ Open a file named s1 of type s2. Return a pointer to the stdio.h
file.
fpute (c, £) int Send a single character to file f
fputs (s, f) int Send string s to file f.
free (p) void Free a block of allocated memory whose beginnin
indicated by p.
getc (f) int Enter a single character from file f.
getchar () int stdio.h
gets (s) char* stdio.h
f' isalnum (c) int ctype.h
i
' isalpha (c) int Determine i ctype.h
value if true, J
isascii (c) int ctype.h
iscntrl (c) int ctype.h
isdigit (c) Determmeaﬁ;@rgument is a decimal dlglt Return a nonzero | ctype.h ;—\
value if true; 6therwise. (A
isgraph (c) Determine if argument is a graphic ASClI character ctype.h \Z/
Retugn a nonzero value if true; 0 otherwise. Qe
islower (c Determine if argument is lowercase. Return a nonzero ctype.h A
vatle if true; 0 otherwise.
isocigit (<) ‘Determine if argument is an octal digit. Return a nonzero ctype.h
A@ value if true; O otherwise.
Determine if argument is a printing ASCIl character (hex ctype.h
0x 20— 0 X 7e; octal 040 — 176).
1’7’ Return a nonzero value if true; 0 otherwise.
vt Determine if argument is a punctuation character. Return | ctype.h
= nonzero value if true; O otherwise.
int Determine if argument is a whitespace character. ciypeh
S=turn 2 nonzero value if true; O otherwise.
isupper (c) nt Determine F argument is uppercase. type
Return 2 nonzero value if true; O otherwise.
isxdigit (c) nt Determine ¥ arzument is a hexadecimal digit. ttype_h
Return 2 nonzero value if true; O otherwise. o
labs (1) long int | Return the absolute value of 1. math.h
log (d) double | Return the natural logarithm of d. math.h
log 1C (d) double | Return the logarithm {(base 10) of d | math.h
malloc (u) void*® Al'ocate u bytes of mentory. Return a pointer to the J malloc.h, or
vies prepared by Prof. Manjrekar 9664338174/ 022-25440393 Page 27

F.E SEM-II (¢/... STRUCTURED PROGRAMMING APPROACH
beginning of the allocated space. stdlib.h

Pow (dl, d2) double | Return d1 raised to the d2 power. math.h
putc (c, f) int Send a single character to file f. stdio.h
putchar (c) int Send a single character to the standard output device. stdio.h
puts (s) int Send string s to the standard output device. stdio.h
rand () int Return a random positive integer. stdlib.h
rewind (f) void Move the pointer to the beginning of file f. stdio.h
sin (d) double | Return the sine of d. math.h
sinh {(d) double | Return the hyperbolic sine of d. math.h
sqrt (d) double | Return the square root of d. math.h
strcmp (s1, int Compare two string lexicographically. Return a negative
s2) value if s1 < s2; 0 if s1 and s2 are identical; and a positive

value if s1 > s2.
strcempi (s1, int Compare two string lexicographically, without regard to
s2) ’ case. Return a negative value if s1 > s2; 0 if s1 and

identical; and a positive value if s1 > s2.

strcpy (si1, char* Copy string s2 to string s1.
s2)
stelen (s) int Return the number of characters in string.
strset (s, c) char* Set all characters within s to ¢ (excludmg t string.h
null character / 0). ‘
tan (d) dobule | Return the tangent of d. math.h
tanh (d) dobule | Return the hyperbolic tangent math.h
toascii (c) int Convert value of argument tBTA Cll. ctype.h
tolower (c) int Convert letter to lowercas ctype.h, or
y & stdlib.h
toupper (c) int Convert lettér t9-uppercase. ctype.h, or
| stdiib.h
¢ denotes a character type argument
d denotes a double precision argument
f denotes a file argument
i denotes an integer argu
I denotes a long integer arg
p denotes a pointer argume 7
s denotes a string argument %,
u denotes a unSIgneqjmtegegargu
W@:‘é%
4
E&M
ii] populatior in 2006 iii] Teams‘vrcw‘ory iv] _basic A VUi &
v] group: vi] basic_hra vii] 422
o] Point out the errors:-
nt = 314562*150; (o9%% iv] k = (a*b] (c+(2.5a+b) {d+e):
name :J,Ajayl. ‘ -
“Tr7r*h = vol_of_cyl; vlinta=b=3=4
(el Sugpese That | | and k are integer variables whose value are 1, 2, and 3 respecti
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 28

a N & & 7y 7 &, &)

7

&ﬁ

K«

r

0NN e =

L)

B

k

{

- F.E SEM-II STRUCTURED PROGRAMMING APPROACH
~ il
- Expression i< (i+))>=k (j+K)>(i+5) kl=3 jr=
e value ; [\ O D | f

IS

”~

F

/

JId L dJdldddlildJd]

2

/./././J Ldddlldddld

!
!

”

[d] Suppose that i and j are integer variables whose values are 5 and 7, and f and g are following

_point variables whose value are 5.5 and -3.25.

int main()

{int a=1,b=2,c=3,d=4.75,x;
clrscr() ;

x=++a + b++ * ++csd++;
printf("%d %d %d %d %d ",a,b,c, d,x);
getch () ; return(0);

}

Expression i+=5 f-=g i* = (i - 3) £/ =3
Value

]) [

(0 DAY (A

Find out put of the following program
C2-P7:- Precedene e |baso iy Output: -
#include<stdio.h> LT P

C2-P8:~
#include<stdio.h>
int main()
{ int x=1,y=1,z,w;
clrscr () ;
z= X++ + x++ +
W= Xt++ + --x + H4x + o x++ + yHd oo
printf ("%4d %d %d 3d ",x,y,z,w);
getch () ;return (0) ;
}

—~X + X - ttyi= yE+E

#include<stdio.h> U
int main () A <

{ int x=3,y=4,z,w§

clrscr() ; = &

Z= X++ + ++x + x;#;j Y—— 1 +Hy;
W= X++ + ++x + --x
| printf ("sd 3d ? d%8q, -

| getch() ;= eturmf0) ;
} 2 o

Sy

C2-P9:- A

ﬁ§+,x Yyt + w9

R S——
LRy e

o~
ZEE- A e
#zrc;c@g{%%ﬂx: h>
maiy ‘%Er
{. in‘*{.f;:: ‘)
clrsCed]
:-*:-—::f;f_ﬁ;,&: 'd 847,31 3%s 01 0
ge:::‘l;;%:::* 0)
3}
C2-P11:- Cutput]
#include<stdio.h>
| int main()
| { int 3i=0;

| elrsece () ;
| printf("%d %d 34 34 :4-,
| getch () ;return(0) ;

} i
C2-pPi2: - Output:- ‘Agj
Notes prepared by Prof. Manjrekar 0664338174 / 022-254403 Pace 20

1 #include<stdio.h>
ﬁij int main() TR chusy) ”;‘ =
,af {int x=1i; N JuER 7 &na“*\ﬁ ’,”'t ¥ ’f L
W clrscr() ; b '/ - “(“Q W sopsinatfy but k(=]
Printf ("$d 8d $d\n",x, (x=x+2) , (x<<2)) ; =l ‘3 So paiat 3
x<<2; g’ﬂvw frint 3
Printf ("8d 3d td\n",++x, X4+, +4x) ; Nedr Aoes pek todifym . shilln=2
getch (), pasdit(4" A ERREEa? |+ s e
return (0) ; .l a‘.)f),, ‘;N :‘:/“" e = % 4+ A'j{sw >4 Then n > €
} st 1 b S A s g Plaep pi ez 4
C2-13:- Output: -
&7 #include<stdio.h> 4ol
" int main() 2, 2, Bk
{ int a=2,b=3,ab=4; G Lo
int i; Al Ozel| Vehne N - U S‘S/\S/
int in = (2y+2; VAN = g0 109 & [)
char ch='c'; —— T~
clrscr () ; o
printf ("%c %$c\n",ch, (++ch)) : e B Loz Us
printf("%d %d %d\n",a,a,++a) ; il ™ o
printf ("$d %d %d\n",b,b ,++b) ; \ Cey: 102
printf ("$d %d $d\n",ab,ab ++ab),
printf ("%d %d\n",a,! ta) ;
getch() ;return(0) ; } S éﬁw",’aﬁ

F.E SE-II STRUCTURED PROGRAMMING APPR()&CH

C2-P1l4:- Find output. “@%ggmﬁyﬁ
#include<stdio.h> Sloug
void main()

{ int x=10,y,z;
clrscr() ;

X

’ g;\/ﬁ ('“(» Q(A_‘,\/L_J

A

z=y=x; ,ﬁl®n~<?%MfJbLfn
—_————x { = Y= [—-™) .
; J -3 e i len
s | orp
; X-=——X-X~—; o~ (™

<7’:(/ Z":/aéﬂﬁﬁ)

| printf ("3d 3d %d ",.xX,v,z);
getch() ;

| }
C2-P15:- WAP to swgﬁQtwo var1ab1= #Without using third variable. N bk,
C2-P16:- Find ou

put. V4
fincluda<stdio. h>
int main()
{int x=1,y=5;
clrscr();

{ Printf ("%d” ,+

B LN e \1/ valice A eqd)

"'fv/" - \)(i Lo wat (Nl t ('775‘1&/L{ F”/Ljﬂh
4 ,’)/ \/:»b;l\,\laf'r‘;"r‘f st e / L0,

5
~
.

.
.

o= |\ D D<
b—(5+53r 0)I|(1+3==‘}

€=5.10 || 10<20 && 3<5: | e)L AR G
printf ("a=%d b=%d c=12 ",a,b,c); = [iy
getch{() ; =

}

3
o)

| C2-P18:-Use of some library function.

Notes prepared by Prof. Manjrekar 9664338174 / 022-2 3

22-25440393 Pasge 30

" 3

N4 & N N & & NN O @) N2 T @ @) @& @B B e B o v m o

T JTI TS ddal d b da b rird

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

#include<stdio.h>

#include<math.h>

void main ()

{ float v,y

clrscr() ;

printf ("ceil (3.4)= $1f\n",ceil (3.4));
printf ("ceil (-3.4)= %$1f\n",ceil (-3.4));

printf ("Absolute value of (-3.1164)= %1f\n",fabs(-3.1416));

printf ("floor (3.4)= $1f\n", floor(3.4));
printf ("floor(-3.4)= $1f\n" ,floor(-3.4));

printf ("abs (-3.4)= %d\n",abs (-3.4)) ; Erd(B.4) =
printf ("fmod(3.4,1.0)= %$1f\n",£fmod(3.4,1.0)); ced =y

printf ("Enter no.for logaiithmic value = ") ; ﬁbathﬂikﬁﬁEV4‘:i&%b"%4u
scanf ("$£", &v) ; k&u%,CZfHQ =@ Fgosopoo
printf ("Answer = %$£ \n",loglO(v)); : e £ vy ¥V

printf ("Enter no.for exponent value = ") ; ® (. ovoveood
scanf ("%$f", &y) ; b

printf ("Answer = %f ",exp(y))/

le=e

j'-’ (YC"\ IOJ%-' ﬂ"»m«'(k’iL‘LL‘ =
= O-%0lo 3P

- A e penentValae -
. . rd 4. Arg ;;7.%33:§L
Svllabus topics:- Introduction lj)eﬁnlthn«, nd uses of Pointers, Address

Operator , Pointer variables , Dereferencing Pointer, Void Pointer.
Pointer Arithmetic, Pointers to Pointers,
2.30 INTRODUCTION TO POINTERS

A pointer is a der'ivhfa type is c. 4.is build from one of the fundamental cate Type
available in C. Pointegs cgntain memoryf"%ddress as their values. Since these mzmory
addresses are the locafigns in the computer memory when program instructions anc cata
are stored, pointe ' sié‘%o access and manipulate data stored in memary

getch () ;
}

wn

RIABLE THROUGH ITS POINTER
3 gg?assigned the address of a variable, the guestion remains as 7o
value of the variable using the pointer. This is done Dy using anotner
0 ;%Terisk), usually known as the indirection operator. Another mame Tor
i ”"@:;,},ecﬂon operator is the dereferencing operator. Consider the following
statements’”
}im‘ quantity, *p, n;
quantity = 175;
p = &quantity;

n="*p;
The first line declares quantity and n as integer variables and p o= = pointer variable
sointing to an integer. The second line assigns the value 179 to quan®ity and The third line

25signs the address of quantity to the pointer varieble p. The fourh line contains the

~direction operator *. When the operator * is placed before a pointer variable in an
M

ez mremarad hv Prof Manirekar 0664338174/ 022-25440393 Page 31

2-

p R

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

expression (on the right-hand side of the equal sign), the pointer returns the value of the
variable of which the pointer value is the address. In this case, *p returns the value of the
variable quantity, because p is the address of quantity. The*can be remembered as 'value

7

) 0

at address'. Thus the value of n would be 179.

" Stage Values in the storage cells and their addresses
e o y ptr
Declaration] , |
4104 4108 4106 T address
x =10 : 10
4104 4108 gigg T aEe
ptr = &x 10 | — 4104
4104 4108 - 4106 -« address
[2
y="ptr |10 10 | 4104
4104 4108 4108 . o aedliivpss

———— polinter to x

‘ptr= 25 25 L 10

4106

4104

P s
£ N S

!CZ—PlQ:—Referencing and Iv)ére‘:f‘e,_/je
’ #include<stdio.h> '

void main()

{

int quantity *p n;
quantity = 179; ’
p = &quantity; //giﬁww '

i . 5 T .
printf("value of quantity %d " *p);

“Gic2s5.0f quantity =%Id" p);

y

INCREMENTS AND SCALE FACTOR

An expression like pl++: will cause the pointer pl to point to the next value of its type.
For example, if pl is an infeger pointer with an initial value, say 2800, then after the

operation pl = pl + 1, the valuz of pl will be 2802, and not 2801. That is, when we

N0 r

) 7}

-

‘}

.

p €O €&

’/ - l}

P

P

increment a pointer, its valuesis increased by the 'length’ of the data type that it points
to. This length called the seale factor. The number of bytes used to store various data
types depends on the system anc can be found by making use of the sizeof operator. For
example, if x is a variable, then s zzof(x) returns the number of bytes needed for the

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Pa

&,

-

[IJILLSISLLdId DT

/j‘/ Iy, .l'

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for short
integers.)

C2-P20:- find output. Output: -
#include<stdio.h>

#include<conio.h> e
void main () ;ﬁ
{ int %=20,y,*ip; 52~ '
clrscr() ; SoLgqLel 259
ip=&x;

y=(*ip) ++;

printf ("%d\n",y) ;

printf ("%d\n", *ip) ;
y=t++(*ip) ;

printf ("%d\n",y) ;

printf ("3d\n",ip) ;

getch() ;

}

C2-P21:-

#include<stdio.h>

int main()

{int a,*p,**pl;

clrscr() ;

a=125;

p=&a;

pl=&p; -
printf ("%d\n",a);
printf ("$x\n",p); = o
printf ("$x\n",pl); ”7??&448
printf ("$d\rn", *P) ;i K)/c].(_x_& :J"P

printf ("$x\n"¥pl); 4.,

printf ("%d\n" **“IT’Z} (8

getch() ;return(0); °

}

C2-pP22:

#1nclude<std10 h>

int main ()

{ int a, *al;
float b, *bl;

clrscr () ;

?"%x \n’ $x \n",al,bl);
‘;Sﬁurn(O);

2.34 Void Pointer

A void pointer is a special type of pointer. It can point to any data type, from an nteger
* value or a float to a string of characters.
s sole limitation is that the pointed data cannot be referenced dirzctly (#he asterisk *
operator cannot be used on them) since its length is always undetermined. Therefore,

R174 7 (V27725 20 Pace 22

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

e T R R
type casting or assignment must be used to turn the void pointer to a pointer of a

concrete data type to which we can refer.

C2-P23:-
#include<stdio.h>
void main ()
{ int a=10;
char b ='A"';
void *ptr=é&a;

printf ("%d \n",* (int *)ptr);
ptr=&b;

//printf("%c",*ptr); (Error,void pointer can not b
printf ("%c",* (char *)ptr);

getch() ;
}

//printf("%d",*ptr); (Error,void pointer can not be dereferanc

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393

s |

i)

'®p Pp & & Gy F P ¥

B ™ @ #® @) B @ @™ @& T3 "B &) @ T

"

& &2, #& fF P #F = AL G P #

AMTJT ./‘.// ['JJI1] ‘/\/,/ ISJJT TSI ST

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

CH3. Expressing Algorithms - Selection

Many a times, we want a set of instructions to be executed in one situation, and an
entirely different set of instructions to be executed in another situation. This kind of
situation is dealt in C programs using a decision control instruction. As mentioned earlier,
a decision control instruction can be implemented in C using:

(i)The if statement, (ii) The if-else statement,

(iii) The conditional operator

3.1 The 'if' statement:-
Syntax: if (this condition is true)
execute this statement:;

C3-P1:- While purchasing certain items, a
discount of 10% is offered if the quantity
purchased is more than 1000. If quantity and
price per item are input through the keyword,

write a program to calculate the fotal
expenses,

/* CALLCULATION OF TOTAL EXPENSES*/
#include<stdio.h>

int main ()

.{ int gty; ?
’float rate,tot,disc,discount blll
| elrscr () ;

| scanf ("%d Sf"
if (gty>1000)
disc=10;
else
disc=0;
tot = gty*rate
discount = gty*r:
bill = tot-disco
printf ("Total :
bill: %f", tot,di
getch() ; 2
return (0

&qty,&rat

v““disc/lOO'

Dlscount 3
unt blll),

%

%$f Final

Entry

Next statementt

Flowchart of simple if Control

Mouffar

| printf ("Enter the quantity & rate);»3;5

N Em‘er a month?(Use a 1 for Jan. etc.)

Whrite a C program to display the following two prompts:-

En’rer a day of the month:Have your program accept and store a humber in the varicble
'monthi in‘response to the first prompt, and in response to the second prompt, accep® and
' 'store a number in the variable day. If the month entered is not between enferes. I7 the

day entered is not between 1 and 31. Print a message inferring the user that an imwal 2

day has been entered.

#include<stdio.h>
int main ()
{ 1int month,day;
clrscr() ;

printf ("Enter month by no.(i:jan,Z:feb..

.):H);

N R R R e e S e e e S T T DS,

9664338174 / 022-25440393

otes prepared by Prof. Manjrekar

g
o
I
(¢}
(PN
N

F.E SEM-1II STRUCTURED PROGRAMMING APPROACH

scanf ("%$d", &month) ;
printf ("Enter a day of the month ");
scanf ("%d", &day) ;
if (month%l |l month>12)
printf ("Invalid month\n");
else
printf("valid month\n") ;
if (day<l I day>”31)
prlntf("Invalld day'),
else
printf ("valid day");
getch () ;return(0) ;
}

OutEut:—

& ‘,‘:"
d an if block'’

3.2 Nested if-else:-1t is perfect
all right if we write an entire 1f-
construct within the body of:
statement or the

body of an ‘else’ statementf
called ‘nesting’

§0f if’'s

c3-P3:~-

‘#1nclude<stdlo h>
int main() g
{ int i; =
clrscx();
printf ("Enter fhar 2:

scanf ("%d", , O
H if(.f.::]%% 4

V

pr%@tﬁ%'E.Dﬂ);
. % »

Sg. <

if;}i==2)

printf ("S.P.A") ;
elss

printf ("Maths2") ;

getch () ;return (0) :
}

Output: -

M
Notes prepared by Prof. Manjrekar 0664338174 / 022-25440393 Paee 36

18

A
ad
(=}

' o

i)

2 T B B 2

@™ @) "E B @ @

e B 7

Wi

FE 3} ® @

™ @®* o

E 7F

"

R @O W

&, (F B F ©», 6 (}

-~

#)

F.E SEM-1I STRUCTURED PROGRAMMING APPROACH

W_

Forms of if:-
o if(iﬁ?g:?v) (e) if{ condition)
' do this ;
(b) if { condition) else
do this ; if (condition)
and this ; do this :
} else
B Fencien) : dothis;
elsedo s _ andthis;
do this ; }
(d) i condition) }
{ do this ;) i{f(condition)
. if { condition }
and this ; dothis ;
} else
else
A do this ;
do this ; and this ;
and this ; }
) y
eise
do this ;

3.3 Use of Logical Operators:

C allews usage of three logical operators, nam
read as ‘and’ 'OR’' and 'NOT respectively. '
C3-P4:-

Percentage less t ﬁ;;an 40 - Fall

b

Write a prograr%’ro calculaTe the division obtained by the student.

(ZEnter marks in 5 sub. (out of 100) : ");
("%d %d %d %d %d",&ml, &m2,&m3, &m4, &m5) ;
=5.(ml+m2+m3+m4+m5) /5;
per>=60)
printf("lst division");
{pexr>= 50) && (per<60))
printf ("2nd division");
(per>=40) && (per<50))
printf ("3rd division");
if (per<40)
printf ("Fail") ;
getch() ;return(9) ;

ared by Prof. Manjrekar 0664338174 / 022-25440393 Page 37

/

F.E SEM-II STRUCTURED PROGRAMING APPR()AC
S et shadelen

|

[a] The matching of the if's with their ¢
no else’s in the program.

orresponding else’s gets avoided. since there are

[b] In spite of using several conditions, the program doesn't creep to the right.

3.4 The else if clause: -

Note that the else if clause is nothing different. It is Jjust
{a way of rearranging the else with the 'if' that follow it
C3-P5: -
#include <stdio.h>
int main ()
{ int score;
clrscr() ;
printf ("Enter your test score: \n");
scanf("%d",&score);
if (score >= 99)
printf ("Your grade is an A.");
else if (score >= 80)
Printf ("Your grade is a B.");
else if (score >= 70)
printf ("Your grade is a C.");
else if (score >= €0) & ;
printf ("Your grade is qﬁD.");Q ’
else if (score >= 0) ‘Wv-x i .
printf ("Your grade is an: F.1) ;- g = |
. g o |
!
|

Flow chart of else..if ladder

else

printf ("Invalid's
getch () ;return(0) ;

d ternary operator since they

ression 1.2 expression 2 : expression 3

w gt’ffhis expr%ssion says is : " if expression 1 is trye (that is, if its value is non- zero).
then'the value returned will be

expression 2 otherwise the value returned will be
expression 3",

TG] int X, ¥;
S:anf(“%d",&x);
Y= (x >5 2 3:4);

4

= STatement will store 3 in y if x is greater than 5. otherwise it will store 4 in y.

(a

5 THE GOTO STATEMENT:

" GOTO

statement causesthe program control to be transferred from

one point

- -~ - \\\\—
pREpares by Prof Manjrekar 9664338174 / 022-25440393 :

' 4

“ € r r m n

o B

of B Y

) 7 9 @

® ’f (/

I

1T T977T7T 9177729972727 917 9

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
w
to another. A goto statement transfers the control to a specific statement. This specific
statement is identified by label which is an identifier followed by a colon. The syntax for
the go to statement is,

goto label :
This label is not declared in the program. But it is attached to the statement

with a colon, to which the goto statement will jump to. So, we can say that the goto
statement jumps to a labeled statement with the same label.

This jump by the goto statement can be either forward or backward. .

goto label; | label =—
' statement;

0o LD SR S [[——
statement;

“goto label; ——w——

Forward jump' ' (o Backward jump

C3-P6: -
#include<stdio.h>
int main ()
{ int num ;
char ans
again :clrscr(); L
printf ("Enter a number :")
scanf ("sd",
if (num % 2

else
printf ("

m
Mokt eeceed e D AR PS8 nriinmDirms fARAR i T
Notes orepared bv Prof Manirekar Q66422R174 / 0NDODKAAN2OR DPamas 10

Avmqu qo’rc-):-I.f is a good . N)
practice to avoid using goto. When C,/ (o ’__
goto is used, many compilers generate | ‘—-") e —

a less efficient code. In addition,
using many of them makes a program
logic complicated and renders the
program unreadable. The following
goto jumps would cause problems and
therefore must be avoided.

3.7 THE SIMPLE SWITCH: When there is a switch stat; ’ \’
The control statement which allows | evaluates fhek‘w

us to make a decision from the member of looks for a matching'case label.
choice is called a switch, or more correctly a none is found, the’ deaU/f label is
switch-case-default, since these three used. If no defauH is found the
| keywords go together to make up the control statement does no‘rhmg The default
statement. They appear as follows: case, if present; will be selected if
Switoh (integer none of t e Pmor cases are chosen. A
expression) | defauh‘ cas I8 not required but it is
{ . & good pr‘ogr‘ammmg practice to include
Case constantl : cod
do this PoNe-¢
break; . 1'The blggesf defecT in the switch \
| g thie oS conmstant2 - | statement is that cases do not break
| | t s %
b:_eak?s automatically after the execution of
Case constant3: the corresponding statement iist
do this ' under a case is executed, the flow of
break; I ; d ti I
default: do con’rfo continues down, executing a
this; the following cases until a break

statement is reached.

Erry e When the break statement is
executed within a switch, C executes
the next statement outside the
switch construct.

) ::jr"AAz‘ ' 4

S ez 5 e moitch satement

L

v
C3-P7:-Write 2 program to display months in word. (Month number is
the input)

#include<stdio.h>

int main()

{ int n=0;
clrscr () ;
printf ("Enter the Month Number (1- 12) : \n") ;
scanf {"%d", &n) ; -

e e —————————————
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 4

P €©) € 0 p p £, &)

I

P N F 0

.

)

of BN I I

of Whad L/ LY LY Y T LY LY TR O B

switch(n)
{ case 1:

break;
case 2:

break;
case 3:

break;
case 4:

break;
case 5:

break;
case 6:

break;
case 7:
printf ("Month
break;
case 8:
printf ("Month
break;
case 9:
printf ("Month
break;
case 10:

case

printf ("Month is Apr");
printf ("Month is May");

printf ("Month is June");

F.E SEM-IT STRUCTURED PROGRAMMING APPROACH

printf ("Month is Jan");
printf ("Month is Feb");

printf ("Month is Mar");

switch (integer expression)
{

case constantl:

Comparef‘_\hjé* switch() control statement with control statement if-glse- %
Switch-case if-else
1 ‘ase control structure Decision control structure
2 ‘Svyntax: Syntax:

If (condition)

(8o =ris

, | do this }
break; else
case constant 2: {
do this; do this
break; }
case constant n:
Notftes nrenared bv Prof Manirekar 066433174 / 072725440303 Paoce 41

Default: do this;

The switch statement has more than two
options or branches. These options, in the
switch statement are called as cases. So, we
can have 'n' cases in a switch, with the last
always being a default case. Whenever no
value matches with the cases available, the
default case is evaluated. But, to have the
default case or no is optional. If the default
case is not present, then when no value
matches with either of the cases, the
program simplify quits the switch statement.
We can call it as an advanced step of the if-
else statement.

In the if-else statement, the 'if’
part is executed if the
expression evaluates to be TRUE
and the else-part is executed if
the expression evaluates to be
FALSE. In other words, w
say that the if-else hastonly Ti Vo,
options available.

Each case can have more than one
statements included within. But, for the case
Statement, placing of these brackets is nota
must. This is because; the case sTaTemenf is
a labeled statement. The use of crarke‘rs is

more th n.one statement. When
,_Ther‘e is more than one
's?a’remen’r placing of curly

If blo;k of else block can also

braces for the block is a must.

ﬂonal
C3-P8:-: WAP to find whether ’rhe ﬁrsf numb
second number or not,
C3-P9: -WAP to accept Threé‘sid e from user and find the type of triangle.

C3-P10:-WAP to find the mmlmum "‘,_,,maXImum numbers out of the three numbers
entered by the usersby nested if- else statement.

C3-P11:-WAP to.check whether enfered character is lower case, upper case, numeric
or symbol using if- e!se only.

C3-P12:- WAP To snmulafe a snnple calculator using serch

1nt ch01ce—3
clrscr(),
~’sw1tch(ch01ce)
{default: N

" Printf ("mumbai ") ;) T~

~scase l:printf(”pune "y -

N

break;
! t pe (<7 el)
case 2:printf("nasik ") ; (Ciyhutvﬁ J Wt /

break; A b A<ale LJ /‘LLgSSrr\:l

}

getch() ;}

-=-215: - Print "Hello World" without using semicolon.
s 1% - WAP to find whether the enter year is a leap year or not.

Z
i
e
9
f
)
Rl
{
)
1
!
J
1
O"w
3\
)J

4338174/ 022-25440393 Page 42

entered by the user is divisible by the |

N

{

)

1

-~

¥

/‘r ? 'V:

|

)

rlr l/) '/

n

‘l‘/‘f‘;‘(’?’r-ﬁ(i??‘/'f

[JJLLddd

{

[JJ

|

Iy

J

/

-
N

|

y

N

/

-
g

' 4.1 The while statement: -

3. For statement.

iTrue

Iteration statements are also loops because of
their cyclic nature. { Body of l
theloop
N H : e
Y

(a) Entry control

- fest
 condition

T

False |

(b) Exit controt

Loop contro! structures

F.E SEM-II Structured Programming Approach
CH4. Expressing Algorithms - Iteration
Iteration is the repetition of statement of = =
block of statements in a program. C has three ,L A
iteration statements: i b
1. While statement, i L
2 2 tost “\._ False -Body of
2. Do...while statement, 7 e 1 the ladp

The statement within the while loops would keep
on getting executed till the condition being tested
remains true. When the condition becomes false, the

| control passes to the first statement that follows the

body of the while loop. i
In place of the condition there can be any other valid.
expression. - ‘

—

{

while (test condition)

body of the loop

} ”

shown in the following examples::
while (i < = 10)
while (i > = 10 && j <'= 15"
while (j >0 && (b< 15.1| c < 20))

So as long as the expression evaluated o a non- zero value the statement within the loop
would get executed.The condition being tested may be relational or logical operators as

while, on the ot
if the conditi or the first time.

It is not necessary th t.a loop counter must only be an int. It can even be a float

4.2 The do-while.Loop:- do
do-while would, ex cute its statements af least } body
once, even if the condition fails for the first time. The | | white

.....

will not execute its statements |

4.3 The forsLoop:

a) Setting a loop counter to an initial value.

i The;:"fdir\i‘s‘ra‘remén’r allows us to specify three things about aloop in a singie fne

b) Testing the loop counter to determine whether its value has reaches the mumber of

repetitions desired.

¢) Increasing the value of loop counter each time The program

nas been executed.
The syntax for the for statement is,
For (initialization. condition;

update)

e -

L i

ne loop

where initialization, condition and expressions are optional expression, statement is any

Structured Progr
executable statement. The three parts (initialization: condition; update) control the loop. |
The initialization expression is used to declare and/ or initialize control

variables for the loop; it is evaluated first before any iteration occurs. We can have more
than 1 expression separated by comma.

The condition expression is used to determine whether the loop should continue

amming Approach

e 3

a »

L
iterating, it is evaluated immediately after the initialization, if it is true, the statement is q
executed otherwise the loop is terminated. We can have more than one condition
_Sebarated by comma. ¢
The update expression is used to For (i = 13 1 < 105 +41) I ¢
update the control variable: it is h{ ,
evaluated after the statement is o \
executed. So the sequence of for (1§ = 1; j 1= 5; ++j) ¢

events that generate the iteration ner | Quier

loop loop ‘ b
are: ,
1. Execute the initialization | €
expression; J C
2. If the value of the condition == T
expression is faise, terminate the - . .
loop; .
3. Execute the statement: ’ ¢
4. Execute the update |
expression; r | €
5. Repeat steps 2-4. ‘ 1 ¢
4.4 Comparison of three. loops:-

Sor while do 7 .
for (n=1; n<=10; ++n) n=1J; ' n=1; ¢
{ while (n<=10) do (=
—_— { { ‘
—— R S ————— ‘
n=n+l; n = n+ig :
H } "
while(n<=10) _ -
~
C
L
¢
iy
.
.
W
' =
\ "
Notes prepared by Prof Manirekar 0664338170 02225440393 P

Fage 45 L

J I'I'FI‘[

J

'l

oy

.

LJJITTITTd

{

WiV

.'AM
prepared by Prof. Manjrekar

 the statement inside the loop
which has not been executed.

F.E SEM-II

4.5 The Break

Statement:

When the keyword
break’ is encountered inside any
loop, control automatically
passes to the first statement
after the loop. A break is usually
associated with an 'if'.

If the break
statement is used in the set of
nested loops, then only the inner
loop in which the break
statement exists is terminated.

Structured Programming Approach
m%m

while {rrommes) “do
{ {
if (condition) if(condition)
[break; break;
5 3 S — Exit| e
from| e from| e
loop } Toop Jwhile (-)
(a) (b)
for (---eer) for (-)
{ {
for (-)
{
Exit if(condition)
from Exit break,
Toop from 1
inner ;
loop —>
(c) (d)
Exiting a loop with break statement
while (--------) for (-)
: ;
1
if(error) for (-~)
goto stop; —— {
if(condition) Exit ;;i;rcﬂ
goto abc; from e
| b
from | }

{

. . two } i v iy
e loopsL s x
} error;

| begmnmg of Theﬁwloop, bypassing

The keyword ‘continue’ allows us
1o do this. When the keyword
continue is encountered inside
any C loop, control automatically
passes to the beginning of the

stop: ~—n-—J4
() (b)
- Jumping within and exiting from the loops with goto smtrmens
—while (test-conditiqr)) do
_________) PR ———
if (-mmmmmme-)/ if (e)
| continue; contines;
_________ b WP e
}-" l—> } while (fest-comiitige);
(a) (b)
— for (initiglization; test comdifiom; ‘moremens|
{ .
i (e)
continue;
(c)

20p. A ‘continue’ is usually

associated with an 'if’. f

g ond connnuing in loops

9664338174 / 022-25440393

Page 45

F.E SEM-II

for (inti=1;i<=10;i++)
{
printf ("A");
}

Structured Programming Approach

int i=1;
for(;i<=10;)
{
printf (YA") ;
i++;
}

int i=1;
while (1i<=10)
{

printf ("AY) ;
i++;

}

int i=1;

do

{ printf ("A") ;
it+;

}

while (i<=10) ;

for(int i=1;i<=10;i++)
{
for(int j=1;j<=5;3++)
{
printf ("aA") ;
}

for(int i=1;i<=10;i++)
{
for (int j=1;j<=5;3j++)
{
printf ("A") ;
if (3==3)
break;

for(int i=1;i<=10;i++)
{
for (int j=1;3j<=5;3++)
{
if (j==3)
break:;
printf ("A") ;
}

for(int i=1;i<=10;i++)
{)
if (i==3)
break;
for(int j=1;3<=5;3++) .
{ e
printf ("A") ;5%
}

printf ("A") ;
»&.}

if{i==3

‘ break;

Find output:-

C4-P1l:-WAP to print Multlpllcatlon tables of 1 to 10.

o for loop.

-P2:- Write a program to genarete all combinations of 1,2,3,

using

: 9w€ﬁ -P3:- Write a program tc display whether a number is prime or not.

A prime Number is one which is divisible by 1& itself.

| C4-P5:- WAP to c

‘culate factorial of given number using for loop.

calculate

n n : .
£ "F and "C, is given as, ""p. =

"p. ana "C,

n!

(n—r)!

C4-P9:-%"
Armstrong number.

=int: An Armstrong number is one,
h digit of the number is equal to the number itself.
-z instance, 153=1"+5*+3°

Write a program to check whether the entered number is an

for which the sum of the cubes of

I
)

3:-A famous

conjecture
tomw=rzes to 1 (one) when treated in the following fashion.

number is odd, it is multiplied by three and one is added2.

holds that

all positive

integers

® Tomber is even, it is divided by two
—s=t_soously apply above operations to the intermediate results
m—
\otes prepased by Pocf Manjrekar 9664338174 / 022-25440393 Page 46

¥

i)

P P ¥

i)

"

p P F)

 p N &

& n 3 N " P

N P o

”

T P "M =

- Y

p o ™

-~

buh

?Z*L /L [éﬂ/z/(((52;;4{(0/(

F.E SEM-II Structured Programming Approach

until the number converges to one.
Write a program to read an integer number from keyboard and implement
the above mentioned algorithm and display all the intermediate values
until the number converges to 1. Also count and display the number of
iterations require for the convergence.

C4-P1l4:- WAP to illustrate the study of approximate level of
intelligence of a person using formula i=2+(y+0.5x), produce a table of
values of i,y,x, where y varies from 1 to 2 and for each value of y,x
varies from 5.5 to 12.5 in steps of 0.5.

C4-P16:- WAP to find whether entered integer is a palindrome or not.
C4- P%féﬁi -WAP to print entered integer number in words.

C4-P1l7:- WAP to accept x and n from user & calculatex? + x% + x*
C4-P18:-WAP to calculate 1'+2Z2+33%. . +n"

7
C4-P19:- WAP to evaluate the series l+§-+E+—
1 7
C4-P20:-WAP to evaluate the series E———+ -—§+—— o,
C4~P27:-Write a function to find GCD and LCM of two . 1nteger using

Euclid’s algorithm.

C4-p#% .- Find output C4{ﬁé§ -find output&w,w~
| #include <stdio.h> #1nclude<stdlo h>
| int main() int main()
|{dimt 4 = 1, 9 = 1¢ {int i; g& =
' elrsar () ; for (i=0;i<8; 1++)
' for (;;) { if (i%2==0).
L , pr:.ntf("%d\n",1+1),
L if (i>3) £t else ;f (1%3==0)

break; ’ continue;

else j+=i; N else if (i%5==0)

printf ("%d \n",j); ¢ ~ break;

i+= 3;
}
getch () ;return (0) ;

printf("\n End of Program \n"):
}’
printf ("\n End of program \n"):

getch () ;return(0) ;}

,Practice Programs

| C4-P4: -

print all prime numbers from 1 to 107.

PR

(8]

C4—P10:—;ﬁﬁ? tp.print all armstrong numbers between 1 ©

C4-Pll:- WAP To find roots of quadratic equation.

C4=P12:-WAP to print first 10 Pythagoras triplet.

C4-P15:- WAP .to reverse a integer number.

n

C4-P21l:-Write program to evaluate sin x = x - x3/3! + x

' C4-P22:- Write program to evaluate cosx = 1 - x2/2! + x4/4! - =8¢
(2P)
C4-P23:- A program to evaluate the power series
x: 1,3 o
ef=14+x+—+—++—,0<x<1
2! 3! _n!
Z4-P24:- A program to evaluate the series
1 , ”
=1+x+x"+x . +2x"
— l—Xx
C4-P25:- WAP to find four digit perfect square numbers in which first
two digits & last two digit are also perfect square.

-

g et s D £ A anirel-ar O0AAATIINRT1 74 (')“‘*‘-"4_._1% 03 Pace 47

F.E SEM-II

C4-P26:-A p051t1ve 1nteger is entered through the keyboard erte
function to obtain the prime factors of this number.

Programs of pattern

C4-P30: -~

void main ()

{ int i,3j,n;

clrscr() ;

printf ("Enter no:") ; /
scanf ("%d", &n) ; ‘

for (i=1; i<=n; i++)
{ for (3=1; j<=i; j++)///
{ prlntf("%Zd",l)
printf ("\n") ;
}
getch () ;

} e

(%) | #include<stdio.h> 44

ik
<

Enter No: 4

1

2
3
4

C4-P31: -

void main ()

{ int i,3,n;

clrscr() ;

printf ("Enter no:");

scanf ("%d", &n) ;

for (i=n; i>=1; i--) P
{ for (j=n; 3>=i; j--) /
{ printf("32d",i); }

printf ("\n") ;
}

getch () ;

}

] Sh
#igclude<stdio.h> \\?V//S>’Fﬁnter No:

Y

4

3
2
1

C4-p32: -

void main ()
{int 1i,3,m=1,n;
clrscr) ;

printf ("Enter no o
scanf ("%d", &n) ;
for(i=i; i<=n;
{ for(j=1;j<=i

ows =") ;

#include<stdio.h> < -

{ Enter nO of rows = 4

(8]

#include<stdio.h>
void main ()

int i,3j,n;
clrscr() ;
printf ("Enter no of row: 1
| scanf (34" ,&n) ;
for (i=1; i<=n; i++)

’ { 21£(i%2'=0) //odd row
i for (3=1,; j<=i; J++)

l { printf(“"3d ",j); }

Notes prepared by Prof. Manjrekar

{ printf("sd ",5); }
printf ("\n") ;

}
getch() ;
}
Enter no of row: 5
1 L
2f 11 {o
1 2 3
4 3 {2 11

9664338174 / 022-25440393

> B 2R TR A B

P

B ® e T B N e

B

")

nop @ =

"B

‘y " =,

i

-, p P P -,

-

L

F.E SEM-II

else

//even row
for (j3=i; j>=1; j--)

C4-P34: -

#include<stdio.h>

void print(int,int) ;

void main ()

{ int i,3j,n,k,a;

clrscr () ;

printf ("Enter no of row:") ;
scanf ("%d", &n) ; '

for (i=1; i<=n; i++)
print(i,n);

getch () ;
}
void print(int i,int n)
{ int j,k,a=0:

k=n-1;

for (j=1; j<=i: j++)

printf ("%$3d",i) ;
else if (j==2)
{ a=1i;
a=a+tk;
printf ("%3d",a) ;

}
else
{ k--;
a=a+k;
printf("%$34",a) ;

}

}
printf ("\n") ;
}

Enter no.. of RQWf; 5%, fi

{ 1
if (j==1) 6 s
10
- (8F. 11 13 [
19 12 14 1]5]]

C4-pP35: -
#include<stdio.h>
void main ()

' {int i,3,n;

{

173<E13+)
int£("%2d", (i+3+1)%2) ;

| clrscr() ; Enter No of rows = 4
printf ("Enter no of 1 |
scanf ("%d", &n) ; 0 1 | I

(for (i=1;i<=n;i++) 1 0 | 1]

| 0 1 | I o i

C4-P36: -
#include<stdio.h>
| void main()

[{ int i,3,k,m,n;
iclrscr(); A
' printf ("Enter g’xo

for (k=1; k<=i; k++)

{ printf("3d ",k); }
for (m=i-1; m>=1; m--)
{ printf("%d ",m); }
printf ("\n") ;

| scanf ("%d", & }
i getch() ; Enter No of rows = 4
1
} 1 2 1
1] |2 [3] T2] 11
1) 2| 3 4 3 2 1
| 1] 2 ;3 2 1
1] [2] |1
) 1 |
for(i=n-1; i>=1; i--)
C4-P37: - Output
finclude<stdio.h>
void main() Enter No of rows = 5
int i,j,k,m,n; 5
clrscr() ; 54
printf ("Enter no of rows"); 543
scanf ("$d",&n) ; 5432

bv Prof. Manirekar

0664338174 /

0727225440302

F.E SEM-II1 Structu

for (i=1; i<=n; i++)
{ for (j=1; Jj<=n-i; J++)
printf (" v) .
for (k=i; k>=1; k--)
printf(”%d",k);
for (m=1; m<=i-1; m++)
printf("%c",(m+’A'—1));
printf ("\n") ;
}
getch() ;

red Programming Appmch

}
C4-p38: -
#include<stdio.h>
void main ()
{ int i,j,k,m,x,n;
clrscr () ;
printf ("Enter no of rows:")
scanf ("$d", &n) ;
for(i=n; i>=1; i--)
{ for (3=1; j<=i; Jj++)
{ printf("sd",3); }
for (k=1;k<=(2*(n—i)—1);k++)
printf (" n) .

if (i==n)

x = i-1;

else x=ji;
for (m=x; m>=1; m--)

{ printf("3d",m); } &
Printf ("\nv) ; =
} r
getch() ; < s
}

C4-P39:-
#include<stdio.h>
i void main ()
1{ int i,3,k,m,n;
clrsecr() ;
Printf ("Enter no o: rows : ") -
scanf(”%d",&n); =
| for (i=1; i<=n; i++)
| i for(j=1; j<=3
{ printf(n n) .}
for { k=l;rk<=i; k++
{ printf{vsg " k)
fc-‘ieg%‘néi-lz =>=1; m--)
a rintf ("id » m) : }

14

void main ()
{ int s=1,i,j,k,m;
for(i=1;i<=4;i++)
{ for(3=4;3>i;j--)
printf (" w);
for(k=1;k<=i;k++)
{printf("%d",s);
s++;
y
S==;
for(m=l;m<i;m++)
{printf ("%d", --s) ;)
sS++;

printf ("\n") ;
} 1]
getch() ; 32 I
3

wn
'

F3"ral:-
#include<stdio.h>

void main()
{int i,k,n,r,P,C,factorial,temp,result;

clrsecr() ; E
~ . — |
---u--------7---—--------—-------—-——-——-—-—-—-—-—-—-—-—-
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 50

F.E SEM-II Structured Programming Approach

M_
for (n=0;n<=4;n++) /*logic for rows*/
{
for (k=1;k<=4-n;k++) /*;ogic for blank spaces*/
{ printf(" ") ;}

{
for (i=1,factorial=l ; i<=n ; i++) /* Calculate n! */
{ factorial = factorial * i ; }
for (r=0;r<=n;r++)

{
for (i=1,temp=1 ; i<=r ; i++) /* Calculate r! */
{ temp=temp*i; }

for (i=1,result=1 ; i<=(n-r) ; i++) /*Calculate (n-xr)'*/
{result = result * i ;}

P
c

factorial / result ;
P / temp ;

printf (" %d",C);
}

}
printf ("\n");

}
getch() ;
}

1 %,
1 1
1 2 1 1Co lco
1 3 3 1 zco gcl 2C2
1 (4 |6 |4 |1 o .. e, o,
o by ‘c, i, ia,

C4-pP42: - " Qutput
#include<stdio.h> 1 ”
#include<conio.h># Enter No of rows = 5

void main ()

{ int m,n,x; 5432%*
printf ("Enter no of ")%% 543*1
‘scanf("%d",&x);ﬂlw_ _, 54*21
for(n=1;n<=x;Q§+Y 5*321
{ for(m=x; . %4321

M
otEs d by Prof. Manjrekar 0664338174 / 022-25440393 Page 51

F.E SEM-II

Structured Programming Approach

ertevPrograms”tovgenerate”dlffereﬁf“pattérné‘Bymﬁ31ng Loop
Control Structures:

|
r
\
4

C4-P43: - C4-P44: -
Erntes 1o of Enter no of rows:4
* * *
rows: 4
s * *
* * *
* * * *
* * *
C4-P45: - C4-P46: -
Enter no of rows: 4
* Enter no of rows: 4
* * *
T * * * X
* * * * * X
* * * * *
* *
L* |
C4-P47: - C4-P48: - ‘Enter no‘of rows: 4
Enter no of rows: 4 * ol X * *
* T * *
* | % | * & *
* * *
* | * * * _
C4-P49: - C4-P50: - Enter no of rows: 4
[Enter no of rows: 4 | *
* * * * %
* * * *x *
* *) * * * *
*
C4-P51: - 5 Enter no of row:5
*
* * ¥*
s * *
*| * * * *
% * *
* * *
*
- {
Enter no of row:5 C4-P54: -
%
* *
3 * Enter no of rows:
* * % * * %
* *
: * * * * *
* | *
— { Io* * * *
* | H *]
‘ - ox ! *
* o x L !
TIE
* I | .
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 52

2P PO Py

I

B Y A A B Y A A/ B/

) ¥ @
!

v
/

" T TP I TT9O" T ?P7T% 1

.

D
\
1 .
‘I\.. F.E SEM-II Structured Programming Approach
> = T T e e e e
C4-P55: - C4-P56:-
Enter capital
Alpbabats i Enter capital
A alphabate:D
D
A B Cc c
B B B
A B C A A A A
A B c D
C4-P57: - C4-P58: -

Enter capital

Enter capital alphabate:D =
alphabate:D A B Tcl |p
A A cim A Al |B c
B B B T tal B
C c g A
D
Soadio bl —) “Enter capital |
Enter capital - ¥ .- alphabate:D |
alphabate:D 1 a iy ‘ A |
D C B A A B
c B A A B =
B A A B > D
! A
C4-P61: - A
Enter capita C| B
alphabate:D FlE | D
oD J| I |E|G
0| N LK,
D
C4-P63:- P C4-P64:-
. Enter no of rows:4
: Y a l
e B| B ‘
A
2 | C C C
- D i D D D
A
C4-P65:=- | C4-P66:~
Enter no of rows:4 Enter no of rows:4
a ; 1]
A B A 2 1 A
A B C B A | 3 2 1 2 B
| A B C D C B A * 4 3 2 1 2 B C

~tes nrepared by Prof. Manirekar 0664338174 / 022-25440393 Page

h
[P

F.E SEM-II

Structured Programming Approach
——— il - s - Reka 5 St

C4-P68:-

Enter No of rows = 4 Enter No of rows = 4

4 A
43 BC
432 DEF
4321 GHIJ
C4-P69: - C4-P70: -

Enter no of rows:4 E,

Enter No of rows = 4 1 !1

A 1 2 A H

CB 1 2 3 A |_B N L]

FED 1 2 3 4 A7 B Ca.l|

JIHG 7|

(Ax ub\v

WU T
G y

)
j@\gi]ﬂ‘

‘e
#
< »
O /
— e
Notes prepared by Frof. Manpeicer 0664338174 / 022-25440393 Page 34

:i&’—',f’,Fll!"',"l'l'f,ﬁ”;”ﬁ'[?7'/’(77?';6‘/;/’/,'/"7[["d/[‘

F.E SEM-II Structured Programming Approach

CH5.Decomposition of Solution - FUNCTIONS

5.1 Modular Programming

Modular programming is a strategy applied to the design and development of software
systems. It is defined as organizing a large program into small, independent program
segments called modules that are separately named and individually called program units.
These modules are carefully integrated to become a software system that satisfied the
system requirements. It is basically a "divide-and-conquer” approach to problem solving.,
Modules are identified and designed such that they can be organized into a top-downs.
hie:‘f*\élhical structure. In C, each module refers to a function that is responsible

single task. .

Some characteristics of modular programming are:
1. Each module should do only one thing. u
2. Communication between modules is aliowed only by a calling module
3. A module can be called by one and only one higher module. i
4. No communication can take place directly be’rween@modulgs“‘th%
called relationship. @ :

5. All modules are designed as single-entry, single exit systems using control
structures. »

C' functions are classified into two categories:-
[1] Library functions.
[2] User - defined functions.

o

- Library Functions:-'C' functions whicH{hav,ej,;_préiagﬁned meaning to 'C' ccmpiler are known
as library function or standardéfiinctions fFor"’eégJ;squ(). abs(), strcat(), cos() etc..
« User - Defined Functions §\c’i om standard functions, if we define our own

L

e%ne functions.In order to maks use of a user-
i}\‘ % 2 i n y ~
need to establisk three elements that are related to functions

A ;
.
swe

1. Function definitio

2. Function call

3. Function decla
The functio

o

finition isan independent program module *hat is spec ally written to
g uir‘%menfs of the Tunction. In order to usz *his function we need to
}.a requ 2 place in the program. This is known as the Function call The
afgealis the function is referred to as the caling program or calling
n. The’calling program should declare any function that is to be used in the
.&MThis is known as the function declaration or function prototype.

&
5.2 DEFINITION OF FUNCTIONS
A function definition, also known as Function implementarion shall include the foliowing
elements.

Function name 4. Local variable declarations
Function type /

5. Function statements
3 List of parameter . 6. Areturn statement
All the six elements are grouped iinto two parts, namely,

p
&
7

Wotes nrenared hv Praf Manirekar QRARA433R174 /1 0077254402072 Dama &&

'{](JIr

F.E SEM-II Structured Programming Approach

* Function header (First three elements)
e Function body (Second three elements)
A general format of a function definition to implement these two parts is give below:

function_typefunction_name (parame'ter list)

{local variable declerationexecutable statementl;
executable statement2;

return statement;

} s

5.3 Function Body

order given below:
1. Local declarations that specity the variables needed by 1
2. Function statements that perform the task of the funct
3. Areturn statement that returns the value evaluated
If a function does not return any value, we can omit ‘rhe return : Tafemen‘r However, note
that its return type should be specified as void. [+)
1. When a function reaches its return statement, ‘rhe con‘rro! is fransferred back to
the calling program. In the absence of @ e’rum s’ra?emen? the closmg brace acts as a int
return. : X

2. A local variable is a variable that is d\eﬂned inside a function and used without
having any role in the communic eTw(f‘ en :Funfﬂons

5.4 FUNCTION CALLS

A function can be called by snmply asing the function name followed by a list of actual
parameters (or argumem:s) if any enclosed in parentheses.

5.5 FUNCTION DECLARATION

A funcf/on Jec/araftbn (also known as function prototype) consists of four parts.
nrﬂon Type(r‘e;‘turn type)
Fuh‘_’non hame
ar:ame’rer lrsf

ided in the foliowing format:
| Function-type function-name (parameter list);
Points to note:
The parameter list must be separated by commas.
The parameter names do not need to be the same in the prototype declaration and
the function definition.
3. The types must match the types of parameters in the functicn definition,
in number and order.
4. Use of parameter names in the declaration is optional.

m
Notes nrenared bv Prof Manirekar 066433R174 / 0122-254401303 Pace 56

™

2PPeH QP

[

|

YRR

I

*F ®

T 7

{

/ S/ Vi B B G B W

R E XYY

F.E SEM-II " Structured Programming Approach

5. If the function has no formal parameters, the list is written as (void).
6. The return type is optional, when the function returns int type data.
7. The return type must be void if no value is returned.

8. Wfe When the declared types do not match with the types in the function definition, 47 .

compiler will produce an error. s
A prototype declaration may be placed i m two placesin a program.
1. Above all the functions (including main)
2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration £
section), the prototype is referred to as a global prototype. Such declarations are F5G
available for all the functions in the program. & |

When we place it in a function definition (in the local declara‘rlon sec‘non),;rlé M
prototype is called a /focal prototype. Such declarations are prlmamly used by the ¢
functions containing them. ;

The place of deciaration of a function defines a region in a progmm in wh|ch the
function may be used by other functions. This region is known as.t e scope of the
function. @ ‘ /

It is a good programming style to declare prototypes in th glob eclaration section
before main. It adds flexibility, provides an excellent qu fererice to the functions
used in the program, and enhances documentation. ; '

Frototype declaraticns are not essential. If a. fun’: jon. has nét been declared before
/1 1s used, C will assume that its detarl "”’ava//ab/e ar fhe time of linking. Since the
prototype is not available, € will assume. ;‘/*m‘ f/re re/um type is an integer and that types
of parameters match the formal.defini 7‘/0/75 A z‘hese assumptions are wrong, the linker

will fail and we will have to chahc; ¥ ram.. The moral is that we must always include
prototype declarations, p/'eferab/y i q72

*a’ec/ar'a tion section.

1. Indeclaration (b

2. In function call

3. In function ﬁ@% nition.

The parame feﬁa’ in prototypes and function definitions are called formal parameters
Filliction calls are called actual paramefters. Actual parameters used in o

ca mq ?tafem at may be simple constants, variables or expressions.

T/fg or'ma/ and aétual parameters must match exactly in type, order and number. Trzi-

~
names‘&h ever, do not need to match.

5.6 CATEGORY OF FUNCTIONS

A function, depending on whether arguments are present or not and whether a value i<
returned or not, may belong to one of the following categories,
Category 1: Functions with no arguments and no return values.
Category 2: Functions with arguments and no return values.
Category 3: Functions with arguments and orie return a value
Category 4: Functions with no arguments but return a value
Category 5: Functiens that return multiple values. Lalhple

e ansmeensci® Bovs Dond Dillon ol AT AN S OLME I Rt A — s

' Default initial value :

@ T T, B VL (icf L/e/aéu;\ia\ (CQ@(sl jlob&f veriable , e

\ﬁL.d Ua’»&\/ﬂe i< {r;v{,\ ‘2&6}’6&&%((;

F.E SEM-II -Structured Programming Approach

%7 Storage classes in C:-

To fully define a variable one needs to mention not only its 'type’ but also its

| storage class’. In other words, not only do all variables have a data type, they also have a

storage class’.From C compiler's point of view, variable name identifies some physical

location within the computer where the string of bits representing the variable's value is

stored. There are basically two kinds of location in a computer where such a value may be

kept - Memory and CPU registers. It is the variable's storage class that determines in
which of these two locations the value is stored. '

Moreover, a variable's storage class tells us:- & 7
[i] What will be the initial value of the variable, if initial value is not g&ecnflgqlly%ﬂsg

(i.e. the default initial value).
[ii] What is the scope of the variable.
[

iii] What is the life of the variable.

Scope :The region of a program in which a variable is available for
Visibility : The program’s ability to access a variable from the me
~Lifetime :The lifetime of a variable is the duration of time in which a
memory during execution. \'

There are four storage classes in C:
[a] Automatic storage class
 [b] Register storage class
' [c] Static storage class
' [d] External storage class
j [a] Automatic storage class:
| The features of a variable define
Storage - memory.

;/a ble exists in the

n attomatic storage class are as under;-

“An unpredictable Value, which is often called a garbage value.

&

Scope - Local to the E‘i[ock'in which the variable is defined.

Life - Till the control ﬁ%gins withinthe block in which the variable is defined.

Following program show, ho éigg'@ufomaﬁc storage class variable is declared, and the fact
that if the variab

C5-P1:- U, Output: |
#includesstdio -him# i }
W g YN N p L=
Mg =20 i |
{ i= |
2;
H * auto int i = 3;
printf("\n i = 84 ",i) ;
}
printf("\n i = %d ",i);
} °
Printf("\n i = %d ",i);
i‘ ' getch() ;return(0) ;
.
Notes nrenared hv Prof Manirekar 0AA433R174 /1 (12275440303 Paoe IR

P’

PO O T PO EODP P e

L)
I

[

f @
I

V9 &« 039

r
|

/N A Al B B A B

-, & =
|

-~

F.E SEM-II Structured Programming Approach

[b] Register storage class:-The features of a variable defined to be of register
storage class one is as under:-

Storage - CPU registers.

Default initial value - Garbage value.

Scope - Local to the block in which the variable is defined.

Life - Till the control remains within the block in which the variable is defined.

A value stored in a CPU register can always be accessed faster than the one that is
stored in memory. Therefore, if a variable is used at many places in a program it is
better to declare its storage class as register. A good example of frequently uged

variables is loop counter. We can name their storage class as register.
[| C5-P2: -

|| #include<stdio.h>
| int main ()

[{
|
!

register int i;
clrscr () ;

|| for (i=1; i<=5; i++)
*t printf ("\ni= %d4",i);
g

etch () ;return(0) ;}

T

For example, if the |

' Not every type of variable can be stored in a CPU ‘
m at value or a double value,

|

[icroprocessor has 16-bit register then they cannot h ld?a
| which require 4 and 8 bytes respectively. Howeve
!
|
|
|

float or a double variable you won't get you any
the compiler would treat the variables]

| [c] Static Storage class: -
|[The features of a variable defified:
' Storage - Memory. ‘
(Default initial value - zero
|
J
|
!

Scope - Local to the Block in which the crf‘*'iable is defined.
Life - value of the va%qtgﬁlt persists between different function calls.
The difference between:: he autqmatic and static storage classes is as shown 52low -

C5-P4: -

#include<stdic.h>

int increment()

{ static int i = 1:

printf("i= %4 \n",i);
i++;

}

int main()

{ clrscx() ;
increment () ; increment () ;
increment() ; increment () ;
increment() ; increment() ; I

getch();return(O);} | getch() ;return(0) ;) l

|| int main/()
' { clrsecr();

Ll
I
(PO

e

In the above example, when variable i is auto, each tfime increment called it is re-
niticlized to one. When the function terminates, i vanishes and its new value of 2 is lost.
The result: no matter how many times we call increment (). iisinticlized to 1 every time.

(73

F.E SEM-II Structured Programming Approach

again the first call to increment (), i is incremented to 2. Because i is static, this value
persists. The next time increment () is called, i is not re- initialized to 1: on the contrary
its old value 2 is still available. This current value of i (i.e.2) gets printed.

[d] External Storage Class:-

The features of a variable whose storage class has been defined as external are as
follows:- Vs iy

Storage - Memory yord i |

Default initial value - zero ot {

Scope - Global X ‘
Life - As long as the program’s execution doesn't come to anend. . , @

in . b
External variable differ from those we have already discussed. In that their scope

global, not local. External variable are declared outside all functions, ye gblé to
' ail functions that care to use them.

}5.8 Scope and Lifetime of Variables @

| | Storage Class Where declared _Lifetime (Alive)

' | None Before all functions 4 Entire program
in a file (may be (Global)
initialized)

Extern Before all functions ina. | Entire fg,lgfplus other | Globadl
1 file (cannct be files where variable

initialized) , isideclared extern
and the file where

[originally declared as
global.

Static Beforesall functions ina | Only in that file Global

file AN &
None or Anside a fapcti Only in that function | Until end of
auto | or block function or block
Insidesa function or | Only in that function | Until end of
bﬁ kK ' or block . function or block
| “|sInside a function ' Only in that function | Global

Riles of use

The sco%ﬁh globai variable is the entire program file.

The scope’of a local variable begins at point of declaration and ends at the end of the
block or function in which it is declared.

The scope of a fermal function argument is its own function.

The lifetime (or longevity) of an auto variable declared in main is the entire program
£xccution time, although its scepe is only the main function.

The life of an auto variable declared in a function ends when the function, its lifetime
- extends 1ill the end of program execution.

A static local variable, although its scope is limited to ifs function, its lifetime extends

On other hand, if i is static, it is initialized to only once,It is never initialized

Notes nrenared bv Prof Manirekar 9664338174/ (022-25440393 Pave 6

7)) P P

)

P)

) P

o, p O T e

‘A

o n Ty oo

R T & 1) p T}

- -

-,

F.E SEM-II Structured Programming Approach
o e e e e e e
till the end of program execution.

All variables have visibility in their scope, provided they are not declared again.

If a variable is redeclared WIThm its scope again, its loses its visibility in the scope of the

redeclared variable. (-~ v @«u

Which to use when:-We can make a few ground rules for usage of different storage
classes in different programming situations with a view to:

[a] Economize the memory space consumed by the variables.

[b] Improve the speed of execution of the program.

The rules are as under:-

[i] Use static storage class only if you want the value of a variable to persist E be
different function calls. 2 ®
[ii] Use register storage class for only those variables that are beihg
in a program.

arguments when making a func‘non call.
[iv] If you don't have any of the express needs mentiong
storage class.)

5.10 Recursion: - When a called function in
of chaining occurs. Recursion is the special ca

itself.
#include <stdio.h>

long int factorial (int);
veid main()

{int n;

long int fact,ans;
clrscr () ;
printf ("Enter n
scanf ("%$d", &n) ;
ans=factorial (n)
printf ("Ans= %1d'
getch() ;
}
long int

1 M«L?‘L) ;
§§

}

Let us see how the recursion works. Assume n=3, Since the velue of nis me® I The
statement fact = n*factorial (n-1):

will be qxecu’red with B = 3*factorial(2):

will be evaluated .The expression on the right -hand side includes @ cal o factorial with
n =2. This call will return the following value 2*factorial(1) Once again, factorial is called

with n=1. This time the function refurns 1 The ssguence of operations can be
summarized as foliows: fact = 3*factorial(2)

e rererared by Prof Manirelrar QAAA22IR1T4 / (VDD_2S440202 Paoce A1

F.E SEM-II Structured Programming Approach

= 3*2*factorial(1)

=3*2*1

=b
Recursive function can be effectively used to solve problems where solution is expressed
in terms of successively applying the same solution to subsets of the problem. When we
write recursive functions, we must have an if statement. somewhere to force the function
to return wﬁrhouT The recursive call being executed. Otherwise, the function will never

return. (1)

~| C5-P5: -WAP to find the Factorial |C5-P6:-Write a program ?;gi i
| for a number by Recursive function. obtain the prime faqﬁaxs
' 1

a, recursively.
(

C5-P7:-Write a recursive function to | C5-P8:-Write
obtain the sum of first n natural | function
numbers. positive
‘ calculate and

C5-P9:- WAP using recursive function ‘power’

Power (x,n)=1
Power (x,n)=x
Power (x,n) =x*power (x, n-1)

#include<stdio.h>
int power (int,int};
void main{)

{int x,n;

clrscr(),

scanf ("%d %d4d",
printf ("Answer:
getch();

}

int power (int
{ if (n==0)

&x, &n},
%d" power(x n)),

W
Notes nrenared hv Prot Manirekar 0664338174 /1 (0122-75440303 Pace 6

) 3

> @ @) ‘B Uy @ ® & b € € # 'p p € @ € P (p €, €0, B Pp € €W, @) Pp p € 4

'y

'y

F.E SEM-II Structured Programming Approach
C5-P10:-Write a recursive function that accepts two positive integers
and calculates and returns their GCD using Euclid’s algorithm. Write
suitable main function. The Euclid’s algorithm to calculate GCD of two

=) | numbers is given as follows.

_ ~ | GCD (m,n) = GCD (n, m) if m<n Y. uruiﬂﬂwqg »&“~g%§§
L 4 = m if n=0 (i Cane o
- - = GCD (# , m%n) otherwise h954%#7f“-%7

ot #include<stdio.h> I [~
int ged(int,int); W\ ,
- void main() \\%ng
— {int x,y;
- clrscr () ;
» printf ("Enter 2 positive integers : ");
y scanf ("3d %d",&x,&y) ;
- printf ("GCD: %d",ged(x,y)) :
- ?etch()
- int gcd{(int m,int n)
- { if (m<n)
> return gcd(n,m) ; .
- else if (n==0)
> return m ;
else
. return gcd(n,m%n) ;
}

called as thel

" K CS—Pll:—Write 4 program on
the lecturers of computer

~ Ackerman’s function which is
7 &ﬁ science. It can be given as:
Y% 'ACK(m,n) = n+l1 if

1=0 and m>0
(mﬁ%-n-ly otherwise.

#include<stdio.h>
int ack(int,int)
void main()
{int x,y;
clrscr () ;
printf ("Enter
scanf("%d%%%g.

£(n==0 && m>0)
return ack(m-1,1) ;

else
return ack(m-1,ack(m,n-1)) :

Rl

Notee nrenared hyv Praf AMarcral-are OLLADIVOITA 1 £ AL 4 20700 " -

Vo ahle N\'\,\o”/b‘t de(/(,&u/c(el e oA "o%"% V\U; i

F.E SEM-1I

-P12:- FIND OUTPUT.
#include<stdio.h>
static int i=5;

// void increment ()

{ static int i = 1; g A T—— —
// printf("i= %4 ",i}; - .

i++; ‘ V€5 0 DA

Structured Programming Approach

/ }

int main()

{ clrscr();

5 increment() ;
increment() ;

| increment () ;

| getch() ;return (0);

)

C/}CS -P13:-FIND OUTPUT
#include<stdic.h>
jv01d £1()
‘{$xtern int n3;
| /static int nl;
{ int n2=20;
Yl nl=nl+10;
/| n2=nl+n2;
| n3=nl+n2;
| | printf ("%d %d %d \n", nl ,n2,n3);
\'}
»int n3;
lint main()
{ register int i;
clrscr() ;
for(i=1l;i<=3;1i++)
£1(0)
getch();return(O);fa
}

\3'* s ’5"; Lo > ¢V /73 2 3o -
)4 Pomters and Function ™ /.. /9.5

A %

ar SS

While calling the function the address of
variables are passed as parameters.
"he corresponding call will be given as, swap (&x,&y):

5. 12CALL BY VALUE MECHANISH
In call by value, a copy of the data is made and the copy is sent to the function. The
- copies of the value held by the arguments are passed by the function call. Since only
|__copies of values held in the arguments are passed by the function call to the formal |
M—w

Nlntae nrenarad by Dend MMaoniral-ar QARAAIARTTA / NI _DIRKAAN2O Darma £4

3

nHn p» v ¥ g

w6 N ™ FH & T P NE ETTE P DWW

o« p PN ® O) NP O NH PO E

.l') -

F.E SEM-II Structured Programming Approach

parameters of the called function, the value in the arguments remains unchanged. In
other words, as only copies of the values held in the argument are sent to the formal
parameters, the function cannot directly modify the arguments passed

C5-P14:-WAP to swap two variables to demonstrate call by value and call
by address.
#include<stdio.h>
void swap v (int,int);
void swap a(int*,int¥*);
int main ()
{int a=10,b=20;
clrscr () ;
printf("a= %d \t b= %d \a",a,b);
swap_a(&a,&b) ;
printf ("after swap with add.a= %d \t b=3%d \n" #i %535 - la
swap v(a,b); é%‘
printf ("After swap with value a=3%d \t b= %d \n",1i,3);
getch () ;return(0) ;
}
void swap v (int i,int j)
{int t;
=3 ;
i=j;

i=t; PAl (0 Qs Sap by valme | @ =~ d \t
} N

@

#
L2

void swap_a(int*i,int*j)
{int t;

t=*3i;

ki=%1q;

*jzt;qﬁw&MkCLM%m% 9@“?5}

U oge 1‘“) ! {
{
/ '/g ' |

i

5.13 POINTER AND FUNCTIONS! A

We have discusged how to pass arguments by value and by reference. Passing value
by reference is nothing but passing a po“’i‘nfrer: as an argument to function.

Pointer to a function is‘pc inter vggjable’,}fs‘for‘ﬂé’g the address of the starting instruction or

statement of the function™We know that when program executes it has to be loadzd in +o

tion v fich gs??named block of statements also gets its location in the

174 float ?*a)(float, int); /* Pointer to Function declaration *

float add(float a, int b) /*function declaration*/
float result ;
clrscr () ;
a = add; /* Pointer to Function assignment */ .
result = (*a)(12.7, 23) ; /* Function call ﬁsingﬁgq}gte: a' x/
printf ("Result = $£f",result); '

getch () ;

} .
float add(float a, int b) /*function defination*/

Notes nrepared bv Prof Manirelrar OAEAARTTA / NND D=AAN2O R

F.E SEM-II S

return (a)

}

4

tructured Programming Approach
{a =a+b ;

Explanation of program: -

! See that the pointer to function returning a float value is declared in the program as,
| £loat (*a) (float ,int) ;

1 The declaration pattern of pointers to function is made as,

<return type of function> (*<pointer name>) (parameter) ;

Here, ‘float' means that it is q peinter to a function which can return ‘float’ type value.
| Also, observed that how an assignment of a pointer to function has been made. It is,
| a=add; '
j r

| The general pattern of assignment of a pointer to function is,
f<pointer name>=<function name>;

& 4 .
| This assignsthe address of function ie. address of the first statemént,of the
| the pointer variable. }

'5.14 FUNCTION RETURNING A POINTER: -

A function can return a pointer type of value; that mea
 of return value of pointer type is illustrate in the program bel

| C5-P16:~
{#include <stdio.h>
| void main ()

{ double (*a) (j;

|
E double function(
|

double result
clrscr()
a = function; ;
result = (*a) () ; /*ﬁFu%?
printf ("Result = $f", result
getch () ;
} :
double function(¥, /*function defination*/
{double a,b; :
a=10.5;
b=20.3;
a=a+b ;

4

’

*/ ;

)

{f;gt f%guare (int *a) ;/*fuct%gp which accept pointer,&;;gtu:n
pointer*/ L

int i, *result :

clrscr () ;
Printf("i = n) .
scanf ("4, i) ; .
result = square (&) |
| Printf("square (i) : 34 ", *result) ;
| getch () ;
}

O ————— IM\“' .
Notes nrenared hv Prof Manirekar 0664338174 / (199-75440303

|, IR

T T/r

[

[C5-P20:-Write a function to find GCD and LCM of

———“:‘ e s s e ————

F.E SEM-II Structured Programming Approach

lint_%square (/int *a])
{ *a = *a * *a ;
return (a);

}

The program declares an integer variable 'i' whose square has to be found. It then calls
the function square(). The call to square() is made using an address of 'i'. the formal
parameter 'a’ which is pointer variable, is used to compute the square of 'i'. See that,
before the function name 'int*' is written which specifies that the type of the return
value of the function square() is pointer to int. The function square() returns the dat
value of 'd’, which is nothing but the address of i’ i.e. a pointer type of value. This
address value returned by the function square() gets assigned to the pointer vam*’d%i
‘result’ which now points to 'i'. the main () function then uses ‘result’ pg‘m’rer'[gp pr‘m£
value of 'i' pointed by 'result’

Practice Programs

C5-P18: —Develop a C program to calculate logarithmic and“expo“ent

C5-P19:-A positive integer is entered through th
function to obtain the prime factors of this n

Euclid’s algorithm.
C5-P21:-Write a function to calculate fqﬁwgriév

r. Using the |

function calculate [i]‘n

(n—r)!

C5-P22:-WAP to find the GCD of
is defined for two numbe
function within a GCD fanc
C5-P23:-Write a recursive fu that accepts one positive integer

mbers recursively, {Hint: GCD

between 1 to x. W gf
positive 1nteger%£1;n and will prlnt sum of all the odd number

C5-P24: —erte a re unction that accepts one pos tive integer
in de01ma1 And the corresponding binary equivalent. Writs 2
suitable malnf ’that will accept positive integer from the user
i binary equivalent with the help of rscursive
o reverse a number by recursion.
Y a general |Decimal |Roman Decimal Roman
to convert |1 | i 100 c
into roman | 5 - 500 =
equivaley 10 x 1000 =
50 1
C5-P27:-Write a recursive function that accepts one positivs LmnTegsr
in decimal and will print the corresponding hexadecimal eguiwva_sat
Write a suitable main function that will accept positiwve imTegsr from
the user and will print its hexadecimal eguivalent wiih the help of
the recursive function.
C5-P28:- WAP to print Fibonacci numbers by recursion.
C5-P29:- WAP to calculate compound interest and amount by formula |

A=P(i+—)" . P = principal amt., R = Rate of Interest, n = number

s == PR T Ty s e e s @ o~ -~

F.E SEM-II

of years.

on two integers.
STOP option.
for each case.

Notes nreomnd bn

Ponf A

Use User défine funétion to caiéu
accept P, R, n and display interest for each year.

C5-P30:-Write a Menu driven

Structured Programming Approach

late pdwer; Prbgraﬁ should

brogram, to perform arithmetic operations
The menu should be repeated until the user selects

Program should have independent user defined functions

e

L J

F.E SEM-II STRUCTURED PROGRAMMING APROACH
W
CH.6 ARRAY

An array is a collection of similar elements. These similar element could be all int's, or all
floats, or all chars, etc. Usually, the array of character is called a 'string’, whereas an array
of int's or floats is called simply an array. All elements of any given array must be of the
same type.

[a] An Array is a collection of similar element.

[b] The first element in the array is numbered 0, so the last element is 1 less tha
of the array.

[c] Anarray is also known as a subscripted variable.

[d] Before using an array its type and dimension must be declared.

I

Like any other variable, arrays must be declared before they are uiSed. The general

form of array declaration is o

type variable-name[size]; | ;‘,

The fype specifies the type of element that will be conta

float, or char and the size indicated the maximu

stored inside the array. For example,
float height [50];

declares the height to be an array containing 50 real e

. Any reference to the arrays outside The declared limits would not necessarily

cause an error. Rather, it might result.in unpredictable program results,

. The size should be éith hurmeric constent or a symbolic constant.

INITIALIZATION OF ONE-BIMENSIONAL ARRAYS

After an array is deglared, its elements must be initialized. Otherwise, they will contain

"garbage”. An arra can be ini‘rialize?ﬁ‘r either of the following stages

. At compile

At run time

the array, such as int,
elements that can be

number [3] = {0,0,0};
float total [5] = { 0.0, 15.75, -10};

int counter []={1,1,1,1};

will declare the counter array to contain four eiements with initial values 1.
Run Time Initialization

for (i=0;i<100;i=i+1)

{if <50
suml[i] = C.0; /* assignment statement */
else
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 69

F.E SEM-II STRUCTURED PROGRAMMING APROACH
sum[i] = 1.0;

}

We can also use a read function such as scanf to initialize an array. For example, the
statements

int x [3];
scanf ("%d7%d%d", &x[0], &[1], &x[2]):
will initialize array elements with the values entered through the keyboard.

Cé6-Pl: -

#include<stdio.h>

int main ()

{ int 1i,3,sum=0;
int marks[5];
float ave;

Output: -

clrscr () ;
for (i=0; i<=4; i++)
{ printf ("Enter marks : ");

scanf ("%d", &amarks[i]) ; @
for (3=0; j<5; j++)
sum = sum+marks[j];
ave = sum/5; .
printf ("Average marks
getch () ;return (0) ;

L}

$f" ,ave) ;

16 bytes get immediately reservewg@}@;ifmg‘mory, 2 bytes each for the 8 integers (under
Windows/ Linux thez:array would occ.upy 32 bytes as each integer would occupy 4 bytes.) And
since the array lsgnof being mmallzed all eight values present in it would be garbage values.
This so happpns beca’ﬁéée the sfomge class of this array is assumed to be auto. If The

ensional Arrays:- col. no. 0 col. no. |
{ row no. 0 1224 56
{1234, 56},
{1212, 33}, row no. | 1212 33 7
{1434, 80}, row no. 2 1434 80 I
{1312, 78},
}; row no. 3 13i2 78

or even this would work...

int stud [4] [2] =
{1234,5€,1212,323,1434,80,1312,78};
course with a corresponding loss
7 readability.

1 1 h

-

17 is important to remember that while initiaiizing a 2- d array it is necessary to mem‘lon
The szcond (column) dimension, whereas the first dimension (row) is optional.

Thus the declarations,

int arr [2] [3] = {12,34,23,45,56,45};

‘M
Notes nrepared 5v Prof Manirekar QRLEAIIRTTA / NDD ASAANION N

® N D n &« O P o o=

|

- mnon e

aQ p n

/

-

f BY GEY Y B B Y B/ Y S

a[./

7, [

[

[1

1 G2 i

SRS S——

F.E SEM-II STRUCTURED PROGRAMMING APROACH
int arr [] [3] = {12,34,23,45,56, 45},

are perfectly acceptable.

S 6.3 Memory Map of 2 Dimensional Array: -
s[O1[0] s[c][1] s[1)[0] LT s[2](0] s[2][1] s[3][0] s[3][1]
- 1234 | 56 | 12121 33 [1434 | 80 | 131> 78
65508 65510 65512 65514 65516 65518 65520 65522
6.4 3 Dimensional Array or Z"dZ-DArTay%—’{ 8 | 9
d Multi-Dimensional Array:- 1%2-D Aray —————» 7] 2
- int arr[3][4][2]= ({ 0"2-D Amay ———+ 4
{ 1
~ {2, 4},
{7, 8},
{3, 4},
{5, 6}
b @
. { L
{7, 61, R S
= {3, 43, . e, b P
{5’ 3}, 0" 2-D Array 1 2-DAmfy -D Array
(2, 31 L2 a] 7] 8] 3] o] 5T 5 7] 6] 3[4] 5[3] 2] 3 DEBERER
} ' 65 65494 65510
- { . *cxy
» {81
| — t {7,
A
> } &
- EAN]
A MuHi—Dimensiogﬁ%rray can be Tﬁi@m@h’r of as an array of array of arrays.
»

How would you r‘e?@g 0 the array element 1 in the above array? The first subscript

Y should be [2], since’ elemg@r is in third two dimensional array; the second subscript
should be [3] sj ce hg tement is the fourth row of the two - dimensional array; and the
third subscript shotld be)[1] since the element is in second position in the one -

We can therefore sc: that the element 1 can be referred as arr [2]

5/Searching and Sorting
t)_gzig, the process of arranging elements in the list according to their values, in

- ascending or descending order. A sorted list is called an ordered list. Sorted lists are

- especially important in list searching because they facilitate rapid search operations.
- Many sorting technigues are available. The three simple and most important among them
_ are: : L)
: C Bubble sert . \
B Selection sort - (ht
® B Insertion sort '
- Other sorting techniques include Shell sort, Merge sort and Quick sort.
v Notes prepared by Prof. Manirekar 066433174 / 07775440207 T =

F.ESEM-II “ ' STRUCTURED PROGRAMMING APROACH

Searching is the process of finding the location of the specified element in a list. The
specified element is often called the search key. If the process of searching finds a ~

match of the search key with a list element value, the search said to be successful; “
otherwise, it is unsuccessful. The two mos‘r commonly used search techniques are: |
. Sequential search |/ 3 ‘ G ‘
. Binary search /s 09 poedo # erfed) L

C6-P2:-Accept numbers from user & arrange them into an array. The

00 number to be searched is entered through the keyboard by the use
N Write a program to find if the number to be searched is present
array and if 1t is present, dlsplay the number of times it ap =

C6-P3: -

another in the reverse order.

C6-P4:- If an array arr contains n elements, then‘“ {
~ Y| check if arr[0] = arr [n-1], arr[l] = arr[n-2] and .
) Enter no. of element in array : 8

Enter elements in array : 1 2 3 4 4 3 2~
Matching elements :8

C6-P5:- WAP to print Fibonacci series
C6-P6:=({WAP to flnd largest number an

LB - WAP to

C6-P8:- WAP in

right. Depending on ch01ce
Suppose array a contains e)
rotate right o/p should be 15 1
then o/p should be (2. ;
C6-P9:- Write a program cepts one dimensional array of not
more than 50 floating point numbers. The program should calculate ’

§\

and print thei¥imean, variance and standard deviation.chp6

3 , ri 2) —
ariance = [ZI(X ; —mean)] Std. deviation = \/rvarlance
: - =l

Lot s |

¢ alculate following series i=1 i=1
plemen§ the selection sort algorlthms

Selection Sort “
Iteration 1 ln:ration 2
~
o] 44] 33 1] (33 22 o] 11 of 11 ol 11
1133 a 44 a4 1] 44] 1] 44 4 33
2| 585 55 55 55 2| 58 2({55 2| 55 f
3|22 22 33 3133 | 3|13 3 & J)
4] 11 11 11 11 4l 22 al 2 4| 22 "
Iteration 3 licration 4
o| 11 o] 1 of11] of1s Cé/‘ﬁ\ ™m ‘;’JE’\
| 1l 22 122 1] 22 1722 :
i 2 &ﬁ] 2| 44 2|33 2| 33 ‘
j‘ 3glaa P 3lss 3 %'] 3| 44
}‘ 1 4133 4133 \ \ 41 44 - 4155

(R

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 72

; F.E SEM-II STRUCTURED PROGRAMMING APROACH
/N | C6-P12:- WAP to delete duplicate elements from array.
C6-P13:-WAP that accepts array of not more than 100 integers. The

v
‘%- program should also accept element x which is to be inserted into an
* | array and it should also accept position j at which the element x is
, to be inserted. The program should print the modified array.
%.CG—Pl4:—Write a program that iiﬁ; ﬁ%f“
. accepts array of not more than z? (a1 23 |2 |
100 integers. The program] T ey
should also accept element x a0 | JoF 23
which is to be deleted from an | Hﬁw,E:/H;»T;
‘ array. Delete all the f;f};‘éi?/TT
P occurrence of the element x. 'FTQT;/:£~Wﬂ
The program should print the :E;7EZ’KE_*W;

» modified array.
C6-P15:- Transform 2D array to 1D array: -
C6-P1l6:- Pascal: The follow1ng set of number is call,d ‘Pascal’s
Triangle’ v 1

/

i 1 7) 4 e /LQL—”(ﬁ}

;;\ 7 -) . coidre A
1 2 1 Q(/&«W 1 yeer<d
1 3 3 1 l/l/\.A—J’V ~fl L‘» i A f'j
1 4 6 4 i, reen oy
1 5 10 10 \—}7J ‘5711»« oo S f\.x—}f’l

If we denote rows by i and columns
triangle is given by- P[i][j]=P[i- 1}’3 1]'P{1—'
C6-P1l7:- WAP that accepts a squar”‘ t
* 10. Your program shoul -
elements, lower triangula
independently. %

y element in the aipe
Vo oo, d{;k

'f;‘ b ti

. -
e
»
—
o
C6-P18:- WAP that agc
S * 10. Your program sho
and print it. % =
= | C6-P19:- WAP }hat accept§%% square matrix of order not more than 10
— * 10. Your pgggram should determlne and print whether the matrizx 1is
-
‘\
»
S~
. 4
-
Y

symmetrlcal o1 not. (w1thout uSLng second matrlx)wA {? /g

%

goi%%rs &Arfév, Passing Array to Function. Pointers
nsional Array, Array of Pointers, Dvnamic > Temory

an.array is declared, the compliler allocates a base address and sufficien® cmoun®
of storage to contain all the elements of the array in contiguous memory locz®ions The
' base address is the location of the first element (index 0) of the array. The comn 2
also defines the array name as a constant pointer to the first elemen® Supooss we

declare an array x as follows:
int =x[5] = {1, 2, 3, 4, 5};

es prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 73

F.E SEM-II STRUCTURED PROGRAMMING APROACH

Eements —— X0 [l X2 @ @

Value —_— 1 2 3 4 5 ‘

Address —> 1000 1002 1004 1006 1008
) At———-Elase address

| Suppose the base address of x is 1000 and assuming that each integer requires two

7 bytes, the five elements will be stored as above.

Rules of pointer Operations
~ The following rules apply when performing operations on pointer variables
1. A pointer variable can be assigned the address of another variable. £

2. A pointer variable can be assgned the values of anofherbgpmfe%iamabé

3. A pointer variable can be initialized with NULL or zero vcﬂu | &

4. A pointer variable can be pre- fixed or post- fixed wu‘rh mcr‘em c d?gtremen‘r
operators.

5. An integer value may be added or subtracted froma pon !
6. When two pointers point to the objects of the sa e
compared using relational operators.

(0]
._.‘
£
o
e
bt
3
pur
o
|
<
O
=,
o
%
®
n
0O
0
3
=
o
—
o
©
o)
Q.
Q.
o®
Q.

.2

array x by the following assignment:
p=x.

this is equivalent fo - p = &x[C]
Now, we can access every vaiae of x-usin p++ to move from one element to another.
The relationship be?ween p cmd% is shown as:

p =&x[0](= 1000)’ ’
p+1 = &x[1] (=1002), .
p+2 = &x[2] -!f-i
p+3 = &x[3] (546

Fs

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 74

pp & &

Ly

i =

p T}

o p) F «€) p p ® &

-

]

) B F @ @) p 7} P =

T T M

F.E SEM-II STRUCTURED PROGRAMMIN G APROACH
6.7 Pointer for two dimensional array:

Columns

0 1 2 3 4 5

0 - p
1 L p+1
Rows 2
3
p+d— 4 (|l 40 4,3 He e p+4
5
(e +4) p+4)+ 3
p —pm poOINter to first row
Pl e > pointer tc ith row
“(p+i) - pointer to first element in the ith row
PHi)+j ——» pointer to jth element in the ith row
(o +i)+ 1 S,

value stored in the cel! (i,j)
{ith row and jth column

Q] What is p in the following decla
1] float (*p)[5];
2] float*p[5];
Ans:

1] float (*p)[5];

In this decjaration, p is p&?ﬁ%@fo array of five floating point numbers. Consider
the following diagram. '

%f@l | |]

bove array can then be referred as P[0l p[1]. p[2]. p[3]. and p[4]
2se elements will be float values.

this declaration, p is array of 5 elements and !l the elements are pointers to
 floating values. Consider the following diagram.

RN
T S !

All the five elements p[0], p[1], p[2], p[3]and p[4] are pointers to float.

T T ————

e ———————————————————————————
‘wotes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 75

Cc6-P21:- find output.
<ﬁ§ #include<stdio.h> N P
A{/ void main() ’
| {int*p,i[3];
clrscr () ; pat = |

i[01=0;

i[1l]=1;

i[2]1=2;

p=&i[1];
printf ("*p++ = 3d v, kptt) S
getch() ;
}
Ccg-p22:- find output.
#include<stdio.h>
#include<conio.h>
void main() o = "3 7M
{ int al[l1={10,20, 30 40 50}

int *j,*k;

j=&a[4];

k=(a+4) ;
if (3==k)
printf ("Both pointers points to
same location");
else
printf ("Both pointers does not
points to same location") ;

getch () ;

}
- 7}?@-—?23 3=
o) #include<stdio.h>
int main ()
{ int i,a[2]1={10,20};
clrscr () ;

(A
\V)
N’

==

{printf("%‘
prlntf("%d\n"
printf ("%d\n",

Output:-v

int 1,3 .
ptr = array; o
clrscr() /
printf ("Enter 10 flecat values : ")/ .
for (i =0; i<10 ;i4E) |
{ scanf ("%f", &array(i]) v
sum = sum + *(ptzr+i):
¥ 1 I

T e A
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 76

.« @& “p P "/ e 1)

’f)

'r n ’q

= B

\
\\
\
F.E SEM-II STRUCTURED PROGRAMMING APROACH
for (§=0; 3<10 ;j++) 0L
prir{ztf(”%f \n", * (ptr+3)) ;
- prir}ltf(”sum = %f",sum) ;
getch () ;
~ }
- 6.8 DYNAMIC MEMORY ALLOCATION
C language requires the number of elements in an array to be specified at compiletime.
The process of allocating memory at run time is known as dynamic memory allocation.
- Although C does not inherently haves this facility, there are four librapy ’
known as "memory management functions” that can be used for allocaﬁorff&
memory during program execution. |
1
% Memory Allocation Functions
- Function Task
- malloc Allocates request of bytes and returns a‘pointer
- the allocated space
o calloc Allocates space for an array of elemerits, in liglizes them to zero and
| free
‘ realloc Modifies the size of previ (
Memory Allocation Process S
The conceptual view of storage of
7 Storage of a C program...
Local variables } Stack
Free memory , } Heap
~Global variables
£olane vasy alde, ° Permanent
R Storage area
" C program instructions
” The p;gggr'am instructions and global and static variables are stored in a region
knowh, as permanent storage area and the local variables are stored in another ares
calle&ﬁsfack. The memory space that is located between these two regions is availablz

 for dynamic allocation during execution of the program. This free memory region
called the feap. The size of the heap keeps changing when program is executed due o

 creation and death of variables that are local to functions and blocks. Therefors i+ is |
possible .to encounter memory “overflow" during dynamic allocation process In such
situations, the memory allocation functions mentioned above return @ NULL pointer
(when they fail fo focate enough memory requested). l

in

L T R

“otes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 77

¥ SEM-1I STRUCTURED PROGRAMMING APROACH

LLOCATING A BLOCK OF MEMORY: MALLOC
~wck of memory may be allocated using the function malloc. The malloc function
reserves a block of memory of specified size and returns a pointer of type void. This
means that we can assign it to any type of pointer. I't takes the following form:

ptr = (cast-type*) malloc (byte-size),

ptris a pointer of type cast-fype. The malloc returns a pointer (of cast fype)to an area
of memory with size byte-size. :

Example:

x = (int*) malloc (100*sizeof (int)); —7
b

~ .
callocns anoTher memory G”OLGTIOH fUhCTIOh that is nor‘rpal ed for requesting memory |

dys and sTr‘uc‘rures While

storage, each of ﬂ'\e same size, and then sets
calloc is: e

&

ptr = (cast-type¥*) calloc (n, elem-size);, ‘1

.’t
?truct ;ﬁ\ d?nt

char namef 2% - %
float age,
e

str_ﬁtr= (record*)calloc{class_size, sizeof (record));

record is of the struct student having three members: name, age and id_num. The
callocallocates memory to hold data for 30 such records. We must be sure that the |
requested memory has been ailocated successfully before using the st_ptr. This may be
done as follows:
if(st_ptr == NULL) ’

-~ {

35('\) printf (“Available memcry not sufficient”)};
® exit (1) ;

; } = -

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 78

v

R 2

s T 2

T, B Ty

- & P

-,

F.E SEM-11 STRUCTURED PROGRAMMING APROACH

e S At L
6.11 RELEASING THE USED SPACE: FREE

With the dynamic run-time allocation, it is our responsibility to release the space when
it is not required. The release of storage space becomes important when the storage is
limited.

When we ho longer need the data we stored in a block of memory, and we do not
infend fo use that block for storing any other information, we may release that block of
- memory for further use, using the free function:

free (ptr);
ptris a pointer to a memory block which has already been created by malloc or calloc.

6.12 ALTERING THE SIZE OF A BLOCK: REALLOC

We can change the memory size already allocated with the help";" ’
This process is called the reallocation of the memory. For exa

= allocation is done by the statement
ptr = malloc(size) ;

then reallocation of space may be done by the statement
- ptr = realloc(ptr, newsi

This function allocates a new memory space of i
ptrand returns a pointer to the flr's‘r byte of the ne
> larger or smaller ‘rhan the 5'/29

- user. Find minimum and maximum nﬁmbé
#include<stdio.h>
> #include<conio.h>
void main ()

{ int *ptrl, *ptr2;
int i,j,e,temp;
printf ("EnterSie of Arraj

scanf ("%4d", &éilf
ptrl = (int*)m
ptr2=ptrl; ¢

Hiece, bhopta

for (j=i+1;: j<e;j++)
if (* (ptr2+i)>* (ptr2+j))
Doy { temp=*(ptr2+i);
* (ptr2+i)=* (ptr2+j) ;
* (ptx2+j)=temp;
}
printf(”Min:%d & Max:%d",*ptr2,* (ptr2+(e-1)));
9oteh 052) (phal);

} 4’5}) w *

pes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 79

F.E SEM-II STRUCTURED PROGRAMMING APROACH
W—m
e
Practice Programs

C6-P26:-Implement the bubble sort algorithms.

Bubble Sort
Iteration 1 Iteration 2
0j44 7171133 33 33 0i337] 0133 ol 33
)]] DS
1} 33 443 44 44 1] 4 1 44:] 11 22
2{ 55 55 55] 22 2122 2l » 2| 44 3
3l 2 22 2 55] 31 3 31
4} 11 11 11 11 1 4155 4 4} 55

Iteration 3

2l
22
11
44

22
]
117
44
85

e I -~
BWRN -
BWN -

&5

C6-P27:-Write a function that accepts the f
the function should also accept the optio
then the array should be sorted in the ascending .order and if the

s”i?dk;n“ﬁhe descending order.

Write suitable main function.

C6-P28:- WAP for binary search.

L

Cé-P29:~ WAP that acceptsi : tive s long integer as amount iné
rupees. The program >a j, “and print minimum number of
notes required to meet this amount. Use Indian currency. i

C6-P30:- WAP that ace ite in dd/mm/yyyy format and the
program should print da

C6-P31:- WAP that accepts a square matrix of order not more than 10
* 10. Your program shoulﬁ%geyermine and print whether the matrix is
symmetrical or not. (By Usin@yéecond matrix) — |

experiment follows. Write a C program to compute and

Cb6< = to multiply 2 trices~naften checki compa 'bili&y.
houl (= u;S\Qfmfunct'onréh\iccept lement of
1] £ 1x, and multiply matrix.

10 * 10, Your g%ﬁgfgm should print all the elements of the matrix.

The pg\%iaﬁ%ghgufd print sum of all the elements in each row along
th, ®Tt should also print the sum of all the elements in

3 column below that column. The program should also print the sum

1 the elements below the row sums.

consg ting of six test results. The result for each

display the average the test results for each

experiment. \ | 5
1°° experiment results 23.2 31.5 16.9 28.0 26.3 28.2
2" experiment results 34.8 45.2 20.8 39.4 33.4 36.8
37" experiment results 119.4 50.6 45.1 20.8 50.6 |13.4 |
4”7 =xperiment results 36.9 42.7 20.8 10.2 16.8 42.7 |
:5—?§§lerite a ¢ program that declares three single dimensional |
arrays named price, quantity and amount. Each array should be 1

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 80

‘B M & @ N ' ¥ & . 'E 'S W W

- 4

- - Ly P

~r

' 3

{

e

F.E SEM-II STRUCTURED PROGRAMMING APROACH

declared in main () and should be capable of holding ten double
precision numbers. The numbers that should be stored in price 10.20,
11.30, 13.14, 16.9, 18.1, 2.71, 7.55, 15.12, 9.45, 17.0. The numbers
that should be stored in quantity are 3, 9.7m, 6.40, 4.5, 5.6, 6.2,
7, 2.8, 15.0, 18.0. Your program should pass these three array to a

function named extend (), which should calculate the elements in
the amount array as the product of elements in the price and
quantity arrays After extend () has put values into the array, the

values in the array should be display from within main{().

C6- P3§“— WAP to convert decimal number into binary number.

C6- P3é.— WAP tc convert decimal number into Octal number.

C6-P3¢:- WAP to convert decimal number into Hexadecimal numbe«.
C6-P38:- WAP to convert binary to decimal.

C6-P2Q:-WAP to convert Octal to decimal.

C6-P40:- WAP to convert Hexadecimal to decimal.

C6- Pd@ﬁ-wrlte a program that creates two integer array
7. Initialize the arrays with random values. “Er
ascending order with the help of a user defined functlen namely
‘sortArray’. Merge these arrays with the hel
defined function named ‘merge Arrays’ whlch
Program should display the arrays before and a
merged array.

new array.
er sorting. Also the
-
»

Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Page 8i

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

CH7. STRING

A string is a sequence of characters that is treated as a single data item.Character
strings are often used to build meaningful and readable programs. The common operations
performed on character strings include:

. Reading and writing strings

. Combining strings together

. Copying one string to another

. Comparing strings for equality
. Extracting a portion of a string

7.1 DECLARING AND INITIALIZING STRING VARIABLES
C permits a character array to be initialized in either of the following ’rwp;frbr“ns}

char city [9] = “NEW YORK"; . &
char city [9] = { \Nl i \EI ; \WI , \’I \YI ,IO’ ,’RI ,IK“] '\\0{};

C also permits us to initialize a character array without speci_fyin’_%jkfh‘ei‘thumber' of .

elements. In such cases, the size of the array will be deTerminéd du’rorgaﬁéally, based on

the number of elements initialized. For example, the statement .
char string [1 = {'G', ‘0", ‘ijQfD’;’\O };

We can also declare the size much larger than the string size in the intiaiizer. That is, the

statement. ;

char str[10] = “GOOD";
"why do we need a terminating null character? A string is not a data type in C, but it is
considered a data structure stored.in an array. The string is a variable-length structure
and is stored in a fixed-length array. The array size is not always the size of the string
and most often it is much larger than the string stored in it. Therefore, the last element
of the array need not represent the end of ‘the string. We need some way to determine

the end of the string data and‘fi‘hﬂg“ﬁlil ‘ ""qmé‘Ter serves as the “end-of-string” marker.

%
=

7 2 READING STRINGS FROM TERMINAL
Using scanf Function:

The input fuhction scanf can be used with %s format specification to read in a
string of characteérs; Example:
r address[10]
& scanf ('%s’’, address);
The ‘problem’with the scanf function is that it ferminates its input on the first
hite space it finds. (A white space includes blanks, tabs, carriage returns, form feeds,
W lines.) Therefore, it the following line of text is typed in af the terminal,
@ NEW YORK

T’hen only the string "NEW" will be read into the array address, since the blank
space after the word 'NEW' will terminate the string reading. In the case of character
arrays, the ampersand (&) is not required before the variable name.

We can also specify the field width using the form%ws in scanf statement for

reading a specified number of characters from the input string. Example:
scanf (“$ws’, name) ;

Here, two things may happen.
1. The width w is equal to or greater than the number of characters type in. The

entire string will be stored-in the string variable.

Nntee nrenared bv Prof Manirekar 0664338174 / 022-25440393 Page 82

B e, ¥ v

s X

" il ettt e

>
' F.E SEM-II STRUCTURED PROGRAMMING APPROACH
> “MMW
2. The width w is less than the number of the characters in the string. The excess
~ characters will be truncated and left unread.
7.3 Reading a Line of Text
A scanf function can input strings containing more than one character. Following are the
> specifications for reading character strings:
s %ws or %wc
However, %c may be used to read a single character when the argument is a pointer to a char
~ variable.
Some versions of scanf support the following conversion specifications for stri

% [characters]
> % [*characters]

The specification %[characters] means that only the characters specnfled ,wn‘r K,n:"rhe
brackets are permissible in the input string. If the input string contains any other chardacter, the
string will be terminated at the first encounter of such a character. The specification
%[“characters] does exactly the reverse. That is, the characters specified after the

= circumflex (*) are not permitted in the input string. The readmg of The sTrmg will be terminated

at the encounter of one of these characters.
char line [80];

» scanf (“%[*\n]”, line);
printf (“$s”, line);

will read a line of input from the keyboard and dlsplay Tne same on the screen.

7.4gets () and puts() :The usage of func’rlon gefs () and pu‘rs () is shown below:

C7~P1:-
- #include<stdio.h>
. int main()
- {
‘ char str[20]; Output:
- clrscr(); Enter any string
printf ("Enter any string :") Hello world
gets (str) ; v “ The string is ;
- puts(" The strlug is H Hello world ‘
puts(str) ; ‘
- getch() ;returrs ;
} |
() can display only one string at a time. Also. on displaying a string,
. unhke pufs() place he cursor on the next line. Through gets() is capable of receiving
- only one string at-a time, it can receive a multi-word string.
C 7 5‘STANDERD LIBRARY STRING FUNCTION:
- STRING WHATIT DOES?
HANDLING |
FUNCTION |
strlen (S1) : It finds length of string, S1 excluding null character and returns an
3 | integer value.
e strlwr (s1) It converts the strings, S1 to a lower case string, S1.

strcat (S1,52) | It appends or attached the string S2, at the end of the string S1 and

places a nuli character at the end of this modified string, S1.

“wotes prepared by Prof. Manirekar 9664338174 / 022-25440303 Paoce {2

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

CH7. STRING

A string is a sequence of characters that is treated as a single data item.Character
strings are often used to build meaningful and readable programs. The common operations
performed on character strings include:

. Reading and writing sfrings

. Combining strings together

. Copying one string to another

. Comparing strings for equality
. Extracting a portion of a string

7.1 DECLARING AND INITIALIZING STRING VARIABLES
C permits a character array to be initialized in either of the following ‘rw{;onfr‘c‘)‘::r‘r\sf‘;‘-i
char city [9] = “NEW YORK"; & Y
char city [0] = ('N’, ‘E’, W', ,’ “Y/,70", 'R/ ,'Kl,; 2\O'};

C also permits us to initialize a character array without specifying the number of .

elements. In such cases, the size of the array will be de‘rermine‘:_d‘ au’roma’riéally, based on
+he number of elements initialized. For example, the statement

char string [1 = {'G', ‘0", "O”‘,‘iﬁ,“D’ ,"™\0"};
We can also declare the size much larger than the string size in the intializer. That is, the

statement. .

char str[10] = “GOOD"; . ; :
"why do we need a terminating null character? A string is not ‘a data type in C, but it is
considered a data structure stored.in an array. The string is a variable-length structure
and is stored in a fixed-length array. The array size is not always the size of the string
and most often it is much larger than the string stored in it. Therefore, the last element
of the array need not represent the end of the string. We need some way fo determine

the end of the string data and the null character serves as the “end-of-string" marker.

7.2 READING STRINGS FROM TERMINAL
Using scanf Function -
The input fuhction scanf can be used with %s format specification to read in a

string of characters;Example:
ch address[10]

& sca’z‘pf\"%s”, address) ;
sThe f;problem»wf“rh the scanf function is that it terminates its input on the first
white s ace'iy'\‘r'%:finds. (A white space includes blanks, fabs, carriage returns, form feeds,
and new lines.) Therefore, it the following line of texi is typed in at the terminal,
. NEW YORK
Then only the string "NEW" will be read into the array address, since the blank
—nce after the word 'NEW' will terminate the string reading. In the case of character
-ays, the ampersand (&) is not required before the variable name.
We can also specify the field width using the form%ws in scanf statement for

-2 a specified number of characters from the input string. Example:
scanf (“%ws”, name) ;

~z-= *two things may happen.
“+h w is equal to or greater than the number of characters type in. The
zntire somg wl| b2 stored-in the string variable.

___—_f.—“_—’_—_—————/——‘__/’_

tes prepmses by Prol anjrekar 0664338174 / 022-25440393 Page 82

IR S S I/ ST B Y i B I B Y S B B 4

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
e ———— i e AR IS AT IAVUIVIUNAT IR

2. The width w is less than the number of the characters in the string. The excess
characters will be truncated and left unread.

7.3 Reading a Line of Text
,, A scanf function can input strings containing more than one character. Following are the
’ specifications for reading character strings:

%ws or 7%wc

However, %c may be used to read a single character when the argument is a pointer To a char‘
variable,

Some versions of scanf support the following conversion specifications for sfrmgs
% [characters] #

%', % [~“characters] A .
The specification %[characters] means that only the characters specnﬁe within' ‘rhe
3 brackets are permissible in the input string. If the input string contains any other character, the

string will be terminated at the first encounter of such a character. The specification
%[“characters] does exactly the reverse. That is, the characters specified after the
= circumflex (") are not permitted in the input string. The readmg of The sTrmg will be terminated
at the encounter of one of these characters. ; 4 Wid

char line [80];
- scanf (“%[*\n]”, line);

printf (“$s”, line) ; .

- will read a fine of input from the keyboard and dlsplay Tne same on the screen.

7.4gets () and puts() :The usage of func’rlon gefs @) and puts () is shown below:
C7-P1:-
#include<stdio.h>
int main()

{

char str[20];
clrscr() ; o 5 Enter any string
printf ("Enter any string :")3*: Hello world
gets(str) ; B . The string is
puts(" The strlng is : ") ; Hello world

puts (str) ; ”ﬁ

getch() ;return(0) ;

Output:

) can display only one string at a time. Also. on displaying a string,
unhke pufs() places the cursor on the next line. Through gets() is capable of receiving
ly one s‘rr'mg af-a time, it can receive a multi-word string.

7. 5 STANDERD LIBRARY STRING FUNCTION:

= | sTRING WHAT IT DOES?
| HANDLING
| FUNCTION |
[strlen (S1) | It finds length of string, S1 excluding null character and returns an
- intfeger value.
e |Strlwr (s1) | It converts the strings, S1 to a lower case string, S1

streat (S1,52) | It appends or attached the string 52, at the end of the string 51 and
places a null character at the end of this modified string, S1.

v m

“~otes prepared by Prof. Manijrekar 9664338174 / 022-2544030 Pace {3

(43

F.E SEM-II

- STRUCTURED PROGRAMMING APPROACH

WW

strcmp (S1,S2)

It compares the two strings S1 and S2. It returns as integer value n |

as,

N<«, if S1<S2
n=0, if 81==82
n0, if S1=52

strepy (S1,S2)

It copies the string S2 in to string S1, modifying the string S1.

strempi It compares the two strings, S1 and S2 without regards to 'rhe case.
Ltk p AR The "i" indicates that this function ignores case. &
s(.t;:icxznf It is identical to the function strempi (S1, S2).These both;

s1,s

return same result as for stremp (S1, S2).

strupr (S1)

It converts the string S1 to the uppercase string, S1.

stxrchr (S1,c)

It searches for the first occurrence of characTer cin The sTr‘mg Sl
If found it returns a pointer to the characTer else re’rurns a null
pointer. ‘ -

strrchr (S1,c)

T

It searches for the last occurrence of the. characTer‘ c in the string,
S1. If found it returns a pointer to The fhar'acTer‘ else returns to the
nuil pointer.

strstr (S1,S2)

It searches for the first occurrence of sub =string S2, in the other
string, S1. On success, it reTurns a pom‘rer‘ to The element in S1 where
S2 be begins. :

strset (S1,c)

It sets all the characters in ﬂ'xe sTrmg 51 to the character, c. It quits
when the terminating null character is detected and returns a
modified string, S1.

' mstrien(S1), strlen(S1) replaces n.

strancat It appends utmost n characters of string 52 to the end of string S1
(51,82,n) and then. appends a Termma’rmg null character. It returns, the
modified sfrmg 'S1; The maximum length of modified string Si is,
A:strlen (S1)+n.
strncmp | Tt compares the first n character of two strings, S1 and S2 and
AEL 5) *-"’t*fe"rurns value similar to strcmp (S1, S2).
 strncmpi It functions similar to strncmp (S1, S2, n), but without case
| (81,82,n) e
strncpy It cop:es utmost n character of string S2, into string, S1. It returns
(81,52,2) " the modified string S1.
f‘?;ihzet) ‘ It copies the character c, into the first n places of the string, S1. If
Qs1,&n

Copying terminates when n
characters have been set or when a null character is detected. It
returns the modified string, S1.

strreQ (S1)

It reverses all characters in the string, S1 except null character. It

returns reversed string, Sl.

7.6 PASSING STRINGS TO FUNCTIONS

Because the strings are treated as character arrays in C,.the rules for passing strings to
functions are very similar to those for passing arrays to functions.

i The string to be passed must be declared as a formal argument of the function when

it is defined. Example:
void displav(char item name)

Notes prepared by Prof. Man

jrekar 0664338174/ 022-25440393 Page 84

p

L B

p 'p &

V)

- O R N & O P P N W

> M & & B N &,

-

, F.E SEM-II STRUCTURED PROGRAMMING APPROACH
J {
. }
- 2. The function prototype must show that the argument is a string. For the above
> function definition, the prototype can be written as
- void display(char str[1)
v 3. A call to the function must have a string array name without subscripts as its actual
- argument.
Example:display (names);
. where names is a properly declared string array in the calling function.
»

> 7.7 POINTERS AND CHARACTER STRING

- char str[5] = “good” ;
The complier automatically insert the null
DA . g o o} d {0
character ' \O ' at the end of the string. C }
7 _, supports an alternative method to creates string
o using pointer variables of type char.
~ Example “7
char *str = T“good” ; str
This ¢reates a string for the literal and then
stores it address in the pointer variable str, ;
The pointer str now points to the first chamcfer' of The sTrmg "good" .
v Note that str is a pointer, not a string.
- 1
. 7.8 ARRAY OF POINTERS
" Char *name[3] = {
“New Zealand" ,
AusTraIla
(:ay)‘lmof three pointers to characters, each pointer pointing o a
. | S5 o ; name [0] ——> New Zealand
| - = - ouh ' name [1} —— Austrafia
- TN name [2} —— india
7 Tﬁis declaration allocates only 28 bytes, sufficient to hold all the characters as shown
N[e|w| [z]ela|t]alnlalw]
Alu s » t a flila \o
tinldii}jallo
-

7 9Pass b;/ Value versus Pass by Pointers

ne technique used to pass data from one function to another is known as parameter
pass, ; Parameter passing can be done in two ways.
- . Pass by value (also known as call by value)

M

I .Y . P R OLOLAT017TA4A 7 NDD YSAANIQR Pace RS

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
M
e Pass by Pointers (also known as call by pointers) p
In pass by value, values of actual parameters are copied to the variables in the parameter
list of the called function. The called functionworks on the copy and not on the original | *
values of the actual parameters. This ensures that the original data in the called function | ¢
cannot be changes accidentally. ‘ :
In pass by pointers (also known as pass by address), the memory addresses of the |
variables rather than the copies of values are sent to the called function. In this case, the | ¢
called function directly works on the data in the calling function and the changed. values |
are available in the calling function for its use. .
Pass by pointers method is often used when manipulation arrays and strings. This m ~
also used when we require multiple values to be returned by the called functi .
C7-P2: - .
#include<stdio.h> | .
#include<string.h> e a f‘ g .
int main () r .
{ char namel[25],name2[25],
str3[]="THANE",word1[10],wordZ[IOI; v
int len; F Y
clrscr(); S 4
printf ("Enter name : "); g
gets (namel) ;
puts (namel) ; ¢
len = strlen (namel) ; dh A Y ¢
printf ("\nLength of string = %d",len); i
strcpy (name2, namel) ; V.o . - g .
printf ("\n name2 : %s ",pémg2)?
if (strcmp ggémel,namerin 0)
printf ("\nNamel & NameZTére same") ; ¢
strcat(namel,sﬁié); i \
printf ("\n %s",namel); v
printf("\pﬂgterﬁa word :"); .
gets (wordl)))
strepy (word2 ,wordl) ; .
trrev (woxd2) :) p
if (strcmp (wordl,word2) == 0) i *
. printf ("\nYour word is a palindrome"); LN
else 5
printf ("Your word is not a palindrome") ; .
getch () ;return(0) ;} ‘
OutEuti:
| Enter name : vinayak .
vinayak
Length of string = 7 -| £
name2 :vinayak ,
Namel & Name2 are same |
| winavak

Nwﬁﬁﬁ,ﬁ ~ - -
Notes prepared v Prof Manjrekar 9664338174 / 022-25440393 Page 86

b=

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

Your word is a palindrome - A
w7
A

C7-P3:-Write a program that %ccepts the string and put it into the
character array. The program should modify the string in such a way
that first letter of word will be printed in capital letters.

C7-P4:- WAP that reads a number from the user where the user enters a
comma in the input. Then print number without a comma.

C7-P5:- WAP that reads a word and print whether it is palindrome or
not.

| C7T-P6:-WAP to remove extra blank spaces.

Input:- Hello world Output:- Hello world
C7-P7:~- WAP that accepts a string made up of words and your
should reverse the order of words. 7 /o 'fw elld 2 > Lo

C7-P8:-WAP to calculate 1length of string w1tygut 5ﬁsIng Liprary

function.

C7-P9:- WAP to copy one string to another without;”using library
function = \

C7-P10:-WAP to concatenate one string to another w1‘hout u51ng library
function. .

’;@ﬁ?g C7-Pll:- WAP to arrange strings in alphabetical orderg7
N : o
- Practice Programs
C7-P1l2:- Write a C function called deléhar (o) that can be used to
delete characters from a string. The functlon should take three
arguments. The string name, the number of characters to delete and the
" startlng position in the string where :.characters should be deleted.
o C7-P13:- WAP to accept a multi-line text and count number of words,
- number of lines and number of characters in it.
C7-Pl4:- This program is to illustrate how user authentication is made
- before allow1ng the user to access ‘the secured resources. It asks for
the user name and then the password The password that you enter will
= not be displayed, instead that ‘character is replaced by ‘*’.
w
-
w
\'\l 1
- .
A

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
_“_h____"______________*__________-____~__________~__M________~_~_

CH8. STRUCTURES AND UNIONS

Csupports a constructed data type known as structures, a mechanism for packing data of
different types. A structure is convenient tool for handling a group of logically related
data items. The concept of a structure is analogous to that of a ‘record in many other
languages. More examples of such structures are:

Time : seconds, minutes, hours

Date : day, month, year

Book : author, title, price, year

City : name, country, population
Address : name, door-number, street, city
Inventory : item, stock, value

Structures helps to organize complex data in a more meﬁéh

8.1 DEFINING A STRUCTURE

We can define a structure to hold this information as follows :

struct book_bank
{

char title[20];
char author[15] ;
int Pages;
float price;

}i
The keyword struct declares q structure t hold the detai ofgfg%r data fields, namely
title, author, pages, and price. Theseﬁ%‘ields{%regcqg d}sfruc‘rure elements or members.
Each member may belong to a differéh‘rg:rypgoff data. book_bank is the name of the
structure and is called as the tructure tag, The ag name may be used subsequently to
declare variable that have the tag's ‘rr‘ucfur‘ﬁ Note that the above definition has not

declare any variables. Tt simplifysg bes a format caled template to represent
information.

1. The templat a semicolon,

2. While the entirgdefinition is considered as a statement, each member is declared

independently ?g:%gs name’and Type in a separate statement inside the template.

3. The tag ngﬁﬁ%ch d?o‘ok_bank can be used to declare structure variables of its

type, later.in theprogram.

- - AM? Arrays Vs Structures

1 1,_5&%@:;@5 and structures are classified as structured data types as they provide

_mechanism that enable us to access and manipulate data in a relatively easy manner.,

hey differ in a number of ways; '

array is a collection of related data elements of same type. Structure can
“have elements of different types.

2. Anarray is derived datq type whereas a Structure is a programmer-defined one.
3. Any array behaves like a built- in data type. All we have to do is to declare an
Array variable and use it. But in the case of a structure, first we have to design

and declare a data structure before the variebles of that type are declared and
used.

%,

terminated with

£,

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

8.2 DECLARING STRUCTURE VARIABLES
After defining a structure format we can declare variables of that type. A

b structure variable declaration is similar to the declaration of variable of any other data
- types.
struct book bank
- { -
char title[20];
N char author[15]; o »
~ s pages; ///,Aecbwcﬂuhhni‘“)
- float price; f ko o Brbdsy
- e S e e o ik oo,
> Struct book_bank bookl, book2, book3; Wz vaable 8y StAud LWL;
The declaration s
-~ 'struct book bank
{
char title[20];
- char author[15];
2 int pages;
- \ flat price;
. } bookl, book2, book3;
v is valid. The use of tag hame is optional here. For examp
Struct
- } bookl, book2, book3. :
- declare bookl, bookZ, and book3 as structure variables representing three books, but
does not include a tag rame.
. N\
= 8.3 ACCESSING STRUCT URE ME RS
We can access;and assign va v%‘hes ,to the member of structure I a number of ways.
the members themselves are not variables. They should be linked to the structure
- var'iables in order to Hiake them meaningful members. For example, the word title, has no
-~ ase ‘fitle of book3' has a meaning. The link between a member
blishedrlising the member operator ' .’ which is also known as ‘dot
- iod operator'. For example,
_ repr'esenhng the price of book! and can be treated like any other ordinary
Vv (bookl title, “BASIC C”) ;
';%i(bookl author, “ Prof. Manjrekar”)
- book1 . page = 250 ;
ookl. price = 120.50;
8.4 STRUCTURE INITIALIZATION
- Like any other data type, a structure variable can be initialized at compile Time.
main ()
v {struct st _record
{int weight ;
v ficat height ;

}

TR R AR (R SR

F.E SEM-II STRUCTUREDPROGRAMWHNG/UWROACH
struct st _record studentl = {60, 180.75} ;

struct st _record student?2 = {53, 170.60}

below
struct st _record
{
int weight ;
float height ;
} studentl = {60, 180.75)
main ()
{
Struct st _record student2 = {53, 170.60}
} i
Note that the compile-time initialization of a structure variable
elements : @ :

1. The keyword struct
2. The structure tag name.,
3. The name of variable to be declared.
4. The assignment operator = .
5. A set of value for the me

enclosed in braces.
6. A terminating semicolon.

JCTURE VARIABLES

tre Type can be copied the same way as ordinar
ongs to the same structure, then the following

@ Personl = person2 &
~ person2 = personl ;
ch as
Personl = = Person2
Personl! = person2?

permit any logical operations on structure variables. In
] i::‘i;.\"*’\‘compare them, we may do so by comparing members individually.

ATIONS ON INDIVIDUAL MEMBERS
/As pointed
the dot

=Xpressions and operators.
f (studentl.number == 111)
studentl.marks + = 10.00;

float sym = studentl.marks +

student?. marks
S0tZ marks * = 0.5

r

—rf——-—*“~ffijjrjr—T~T*——***“*—-*‘*‘*77‘—-_‘7‘—‘*_“‘*
Notes prepared 9¥ frof. Manjrekar 9664338174w/042-25440593

s enn AN

i

V. Y . T~

» y -~ -

¢)

4

F.E SEM-II

The following statements are valid
studentl .number+ +;
++studentl . number;

STRUCTURED PROGRAMMING APPROACH

8.7 ARRAYS OF STRUCTURES

struct marks

{
int subjectl ;
int subject2 ;
int subject3 ;
};
intmain ()
{

struct marks student [3] = { {45,68, 81},

{75, 5%, 68F, [B7, 36, 71} };
}
This declares the student as an array of three elements
student[0], student[1], and student[2]
An array of structures is stored inside the memory

in the same way as a multi-dimensional array. The array.
student actually looks as shown in fig.

student [0].subject 1 [45
.subject 2 _*-'_68 .
.subject 3 81 .

» student [1].subject 1 75 o
_subject 2 53 ;
subject3 | 69

student [2).subject 1 | - 5T -
subject 2 . 6
subject3 L 71

8.8 ARRAYS WITHIN STRUCTURES
C permits the use of arrays as structure member
arrays of type int or float.
struct marks
{int number ;
float subject [3]
}student [2]

Here, the member sub'J‘

The array student instde memory

ingle or multi dimensional

ains three elements, subject{0], subject[1] and

subject[2]. These elements can%’@accésged using appropriate subscripts. For example,

the name . o
% student[1] .subject[2]

{int %g%rness 3
¢ int house rent ;

g\ks obtained in the third subject by the second student.

int city;
}allowance ;
}employee ;
The salary structure contains a member named allowance which itself is a structure with

+hree members. The members contained in the inner structure namely dearnes

nouse_rent, and city can be referred to as

I

ployee.allowance.dearness

™ Pl Y

. N ANYO179A4A /1 N0 DNSAANTYOQD

(%3

Pace 91

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
employee.allowance.house_rent

employee.allowance.city

structure members within the
(in the calling function).

The third approach employs the conce
argument. In this case, the address o
called function, The function can acce
it. This is similar to the way arrays ar
4. The general format of sending a copy

pt called pointers to pagssbe
cation of the structure i
Ss indirectlysthe ef

cture as an
‘passed to the

AR

The called function takes the following
form: :

£ [data type function_name(struct_type st_name)
{ ‘ '
& 4 | ...

return(expression);

| The called function must be declar
its type, appropriate to the datq type it
/ expected to return.
% |CB-P1: -WAP that wiil stos@
Sor?mgpigplgy names of tﬁé
to numbermqﬁﬂmagghe
| information “afsq
| than 50 match,

|

S > i
icn of Players using structure.
g B o et

ayers “alphabetically and’with respect

)

T
5 ‘st’ to contain name,
£ie

date of Bi
gq. Define the structure “dob”

to represent date

S
‘*c;ug€§§td1 1>
Vincggdeégtring.h>

~r§§i dob "

o v b Jecfli %Mwu“da&Aa{u&Vb

!

’ tehar’ name 5] ; . e npMalile F) 15F St decdared here o is o
struct dob birthdate; ¢ ﬁz,ﬁiLJ?1n45huut

int total;

} st[25],temp;

void main () .

{int i,9,n;

TP T e

ntf ("How many student :),

Er i L. WY B :
F.E SEM-II STRUCTURED PROGRAMMING APPROACH
D S ORI PRTN 1o« ool ssimasions o i silsssnlisommismecniinitss s i st st sl

{ printf ("Enter name of student:") ;
scanf ("%$s",&st[i] .name) ;
printf ("birthdate: \n") ; Q P

scanf ("%d %d %d",&st[i] .birthdate.dd, P
) &st[i] .birthdate.mm,&st[i] .birthdate.yy) ; é
printf ("Total marks :\n"); ~7
- scanf ("%d",&st[i].total) ; /
} 7 - .
for (i=0;i<n-1;i++)
for (j=i+1;j<n;j++)
{ if(st[i].total<st[]j].total)
- {temp=st[j];
st[j]l=st[i];
w st[i]=temp;
}
- }
printf ("Student result : \n");
for (i=0;i<n;1i++)
- {printf ("Name:%$s\t birthdate:%d%d%d \tTotal:
— St[l] name st[i] blrthdate dd,
= ¥

for (1=0;i<n-1;i++)
{ for(j—i+1'j<n j++)

{temp=st[j];
st[jl=st[i];
st[i]=temp;

}

}

printf ("Students alphabeti i ca
for (i=0;i<n;i++)
{prlntf("Name»%@J

) tructure time to contain hours & minutes. WAP to
stance by creating variables of structure time.

- .] ¢
c1ude<str1ng h> /g F=h inth d,
- | SE@E t time e
- {in our ,min;

} T1 T2 total;
void addition(struct time tl,struct time t2);
void main ()
. {printf ("Enter first time in hour & min : ol -
scanf("%d %d" , &T1.hour, &T1l.min) ;
- prlntF("Enter second time in hour & min : ") ;
scanf ("%d %d",&T2.hour, &T2.min) ;
addition (T1,T2) ;
- getch() ;

F.E SEM-1II

STRUCTURE
void addition(struct time T1,struct time T2)
{int templ, temp2 ; (
temp1=(T1.min+T2.min)/60; , [
temp2=(Tl.min+T2.min)%60; - o

total. hour =T1.hour+T2.hour+templ;
total .min =temp2;

printf ("total time = g4 hours g 34 min",
total.hour,total.mi

n);

}

8.11 UNIONS

Unions are q concept borrowed from ! Storage of 4 bytes

structures and therefore follows the same 1000 1001 1002 1004
Syntax as structures. However, there is major '
distinction between them in terms of Storage. In

Structures, each member has its own storage T
: | A

location, whereas all the members of a union use i, »{

the same location, This implies that, althoughq | [———n

union may contain many members of different

types, it can handle only one member qt q time.

Sharing of a storage locatitg, by union members
/union item ‘

{
| int m ;
| float x
; char ¢ ;
[loode ;

- T e iiiic e

This declares q variable.code of Type.union item. The union contains three members,
each with a different data ‘type ‘Hg er, we’can use only one of them at a time. This is

due to the fact that only one location is‘allocated for a union variable, irrespective of its
Size. A

The complier: llog
variable type in the i
is the largest amon
same address.£§ ﬁ%}%

To access

&

thelmembers, Figure shoes how qfl

umgs that a float variable requir

es 4 bytes of storage.
Mmember, we can use the same sy

ntax that we used for structure

s valid, but the declaration

union ijitep abc = {10.75}
This is because the type of the first member is inf.

IS invaiid

Notes préparec oy Prof

DPROGRAMAHNGA@PROACH

dr /'

' B Y

b)

'

3 - .

&

¢

' |

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

8.12 SIZE OF STRUCTURES
We normally use structures, unions and arrays to create variables of large sizes.
The actual size of these variables in terms of bytes may change from machine to machine.

We may use the unary operator sizeof to tell us the size of a structure (or any variable).
The expression

sizeof (struct x)
will evaluate the number of bytes required to hold all the members of the structure x.

C8-P4:- WAp to store the information of a person as his name or AD
number using union. Ask the user for the information choice.

#include<stdioc.h>

union info

{ char name[20];
int ID;

} &

void main ()

{ union info I1;
int choice;

clrscr () ;

printf ("Enter choice:\n 1>Name \n 2>ID

| scanf ("%d", &choice) ;

switch (choice)

{case 1l:printf ("Enter your name:
scanf ("%$s",Il.name) ;

break;

case 2:printf ("Enter your

scanf ("3d",&I1.1ID

break; v
default:printf ("wrong ch
} :
if (choice==L)m® R

. A <4
printf ("Your name :%s",Il.name);
else if (choife==2)
printf ("Your ID¢
getch () ;
}

e ————————— .]

e arenared by Prof Manirekar QAAA2ART 74 7/ 005440207 Paoce O3

F.E SEM-II STRUCTURED PROGRAMMING APPROACH

~.
Ch 9. File Management in C <
Real-life problems involve large volumes of data and in such situations, the console -
oriented I/0 operations pose two major problems. %
1. It becomes cumbersome and time consuming to handle large volumes of data through S
terminals. .
2. The entire data is lost when either the program is terminated or the computer is -
turned off)
I1 is therefore necessary to have a more flexible approach where data can be storedon P
The disks and read whenever necessary, without destroying the data. A file is plac S
disk where a group of related data is stored. c
9.1 DEFINING AND OPENING FILE 3y
Data structure of a file is defined as FILE inthe library of stand A
definitions. Therefore, all files should be declared as type FILE b o
FILE is defined data type. - N
Following is the general format for declaring and opening Y
FILE *fp; ‘l \ .
fp = fopen(“filename”, “mode”);
The first statement declares the variable fp as a "poj jer‘ o the data type FILE". -~
As stated earlier, FILE is a structure that lS defmb‘d The I/O llbmr'y The second 3
statement open the file named ﬁlenc{" 1 ’ "
fp. This pointer which contains alf the mfnrmaﬂon abbm‘ the file is subsequently used as a 3
communication link between the sysTem nd e program. ¢
The second statement also pecifies the’purpose of opening this file. The mode does
this job. Mode can be one of the followi g ¢
r open thefile for reading ohly -
w open the' iiie for writing only. kS
a open the file fog; £pendlng (or adding) data to it. .
Note that both the. ‘leename and mode are specified as strings. They should be Y
enclosed in douge ., a’n%"‘marks K.
1. Whength Pmode l% writing', a file with the specified name is created if the file does -
rlg_;e&sf ,The confents are deleted, if the file already exists., &
V\{hen ﬁ:se purpose is ‘appending’, the file is opened with the current contents safe. A -
the SPECIfI ed name is created if the file does not exist.

‘.V‘rhe purpose is reading’, and if it exists, then the file is opened with current .
conTen'l,wsafe otherwise an error occurs. N
FILE *pl, *p2;
pl = fopen (“data”, “r”); -
p2 = fopen (“results”, “w”’); P
The file data is operied for reading and results is opened for writing. In case, the results)
file already exists, its contents are deleted and the file is opened as a new file. If data .
file does not exist, an error wiil occur. .

>
3

M
Notes prepared by Prof. Manjrekar 9664338174 / 022-25440393 Pace 96

>

(

(

 d

(

L 4

F.E SEM-II STRUCTURED PROGRAMMING APPROACH
e e
9.2 CLOSING A FILE

fclose (file_pointer);

This would close the file associated with the FILE pointer file_pointer.
FILE *p;, «p2;
pl = fopen (“INPUT"”, “w”);
p2 = fopen (“OUTPUT"”, “r");

fclose (pl);
fclose (p2);
This program opens two files and closes them after all operations on them are
Once a file is closed, its file pointer can be reused for another file,,

9.3 INPUT/QUTPUT OPERATIONS ON FILES

The getc and putc Functions
putc (c fpl) ;

pointer fpl.
= getc(fp2) ;

would read a character from the file whose file poi
The file pointer moves by one character posi
The getc will return an end-of-file marker EOR;
Therefore, the reading should be t

Writes a program to read data ot The keyb%‘égrd wr'n‘e it toa fule called INPUT,
again read the same data fr UT

tver'y:gper'a’non of getc or putc.
yf the file has been reached.

The getw and putwFuctions
The getwand putwar@integer-oriented, functions. They are similar to getcand

putw(integer, fp);
S @rp) ;
ctions

fprintf (fp, “control string”, list);

ysTring'earitains output specifications for the items in the list. The /ist may include
les, constants and strings. Example:
-array variable of type char and age is an int variable.

va
name

fscanf(fp, “control string”, list);

This statement would cause the reading of the items in the list from the file specified by
fp, according to the specifications contained in the control string. Example:

fscanf (f2, “"%s %d", item, &quantity); '
Like scanf, fscanfalso returns the number of items that are successfully read. When the
end of the file is reached, it returns the value EOF.

M
E_—',ﬁ——_‘_————
Notes prepared by Prof. Manirekar 0664338174 / 022-254403973 Piaoe Q7

F.E SEM-IT STRUCTURED PROGRAMMING APPROACH
e > 1 URED PROGRAMMING APPROACH

C9-P1:- WAP to accept a set of characters from user until the user presses full

stop() and store it in a text file. Read from the file and display the contents of the file.

include<stdio.h>
void main ()
{FILE *fp;
char c=' ' ;
clrscr() ;
fp=fopen("test.txt","w");

printf ("Write data in the source file and press the full stop
L {.) s \n") ;

| while (1)
1 ic=getche () ;
if(c=='.") Lle (o
{fputc(c,fp);
break;
}
else
fputc(c, fp) ;
}

fclose(fp);
' printf ("\nYour source file:\n");
fp=fopen(”test.txt","r");
while(!feof(fp))
g {prinﬁf("%c”,getd(fp));
Ly) -
fclose(fp);
getch() ;

|

l

fe—

C9-P2:- WAP to count the
include<stdio.h> y
void main ()

{ FILE *fp, *fpl;
int n=0;
char c=' !

clrscr() ;

printf ("Source“file i§§\n");
fp=fopen("t§§&. : 'gﬁ3;

2

b

while(!f@%%%%%é) _
getc(fp)) ;

£pl=fopen’("test. txt",nrv) ;

x%%le(c=fgetc(fp1)!=EOF)
Lo,

{&%ﬁ;/

}

priﬁ%f("\nNumber of char.in file : %4 \n",n) ;
fclose(fpl) ;

getch () ;

}

C9-P3:-

WAP to accept the name and roll number of a students and store it in a text
2. Read the stored data and display the same from the file. It should be menu driven

program that can have multiple entries. The previous data should be retained and new
L data can be appended in the file. All the entries can be displayed if required.

e e
T ———

Notes prepared by Prof Manirekar 9664338174 / 022-25440393

s
o
15
g

i

Fa -

4%

‘' N2 @& W > d»

) 3

|
L F.E SEM-II STRUCTURED PROGRAMMING APPROACH
A 4 N
I # include<stdio.h>
-~ void main()
Il\u {FILE *fp; '
char name[20]};
hﬁ?: int roll,choice=0;
clrscr () ;
- while (choice!=3)
I__.. { printf("1l.New Entry\n2.Display all entries\n3.Exit\nEnter your
! ~ choice :");
. .. scanf ("%d", &choice) ;
—— switch (choice)
. (W) { case 1:
— fp=fopen ("Student. txt", "any) ;
= prlntf("Enter name and roll number of the student: I'),

scanf ("%s %d" jname, &roll) ;
fprintf (fp, "4s %$d" ,name, roll) ;
fclose (£p) ;
break;
case 2:
fp=fopen("Student.txt",“r");
printf ("Name\tRoll no.\n") ;
while (!feof (fp))
{
fscanf (fp, "%s %d",name, &roll);
printf ("%$s\t%d\n" , name,roll);
}
fclose (fp)
break;
case 3: break;
default: printf ("
} 4
} /" DRPORY'
getch{() ;
}

£l
S

include<cén
void main(gk
{FILE *é@urﬁe

name of source file\n");

name of target file\n");

gets(tflle),

source=fepen (sfile,"r") ;
target=fopen (tfile, "w");
while ((c=fgetc (source)) !=EOF)
{

. if (isupper(c))

i c=tolower (c) ;

else

F.E SEM-II ‘ STRUCTUREDPROGRANMHNGA&PROACH
c=toupper (c) ;

fputc(c,target);
}

fclose(source);

fclose(target);

source=fopen(sfile,"r");
printf(”Displaying data from the SOURCE file:\n") ;
while(!feof(source))

{printf(”%c",getc(source));

}

fclose(source);

target=fopen(tfile,"r");
printf("\nDisplaying data from the TARGET file:\n"¢

while(!feof(target))

{printf(”%c”,getc(target));

}
fclose(target);
getch () ;

}

